A fundamental charactenstic of guantam systems that are chaotic in their dassical hmit
is umiversality. It is observed that diverse systems behave identically when statisties of energy
levels or wave functions arce considered, provided that they have the same symmetries. These
universal statistics agree with those of random matrix theory, Le. with the statistics of cizenwml-
ucs and cigenveetors of large random matrices [1]. Support for this random mairix hypothesis
comnés Irom 8 large numboer of gumerical and exporimental investigations which have been car-
ried out on 4 great varicty of systems [2]. However, it remains an open question to enderstand
the origin of this universality, and its relstion to the underlying classical dynamics,

Ozc theoretical approach by which such an understanding may be attempted is the semi-
classtesl mefhod, Seiniclassical approximaticns are asympiotically valid in the lmit & — 0
where universality iz expected to hold. Moreover, they ditectly connect quantim proportics
with propertics of the corresponding chaotic classical aystem. They have heen applied in par-
Eicudar to statistical distributions of the ceergy levels which are hilinear in the density of states,
one example being the spectrsl form factor A(r). One of the successes of the scmiclassical
approach has heen to show that the spectral statisties do indeed agree with the random matrix
statistics in the limit of long-range correlations; specifically the correct teading ovder behaviour
of H{r) as ™ — 0 has been derived [3].

An extension of this result requires knowledge of correlations between different periodic
orbits [4]. The relevant mechanisms by which periodic orbits are correlated have to be identified,
and the contributions of correlated orbits to the spectral {orm factor have 1o be evaluated.
Based on an analogy with disordered systems [5] and with diffractive corrections {6] it has heen
suggested that the next term in the expansion of K{r} for small r criginates from ‘two-loop
orbits™ orbits that have a self-intersection with small erossing angle and neighbouring orbits
without sellintersection [7]. Therc is strong numerical evidence that in systems with fhme-
reversal symmetry these orbil pairs indeed yield the next-order-form in agreement with the
cxpectution based on random matrix theory

In the folowing we proscnt s derivation of the next o leading order term in the expansion of
the spectral form tactor for small 7. We cvaluate analytically the contribiions of the two-loop
orbits to the form factor for uniformly hyperbolic systems with time-reversal symmetry, and
wu show that the result indeed agrees with randem matrix theory. The ealculation makes clear
the properties of clagsical trajectories which arc responsible for the universal resnlt.

We consider the spectral form factor, which is defined as the Fourier transform of the two-
point correlation function of the density of states
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where the density of states d(&) = 3 #(F — ;) is divided inte a mean part &(5) snd an
oscillatory part d,(F). For systems with time-reversal symmetry, or more generally an anfi-
initary syrmmetry, it is expected that the form factor agrees in the semiclassical limit (# — ()
with that of the Gaussian Orthogonal Ensemble {GOE) of random matrix theory which has
the cxpaosion

K5} =27 — 2%+ O(%) as 70, (2)

The semiclassical approxdimation for the fortn Factor i3 obtained by Inzerting Gutzwiller's
trace formmuia for the density of statcs into (1) and evaluating the integral in leading order of £.
The result is an approximaation in terms of a donble sum over all periodic orbits of the classical



Figure 1 The pairs of orbits considered here consist of different segmments, Im each scgment one
orbit is very closs to the other (or its time reverse), but they can differ in the way the sepments
are connerted.
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where 7 = T/{Rd(E)) and b = 2rh  Futhermore, A, is an amplifude, generafly complex-
valued, which depends on the stability and the Maslov index of the periodic orbit «y, and 5,
and 17, are its aclion and period.

The deuble sum in (3} runs over all pogsible pairings of periodic orbits. However, most of
these pairs do not contribute in the scmiclassical mit. Periodie orbits which are loeated in
different regions in phase space are uncorrelated, and when summed over, the contributions from
different pairs cancet each other. 1t is expected that the relevant semiclassical contributions
comne [rom & relatively small number of pairs of orhits which are correlated. The key problem
iz then to identify the mochanism which is hehind thege correlations.

The basic assumption we maks is that only those periodic orbits which are almost everywhere
close to one apother, or 1o the ime-reverse of the other orbit, are correlated [7]. In order for
two orbits to be different but nevertheless olose they mmst have special forms which can be
constructed in the foliowing way. The orbits arc composed of different scgments during which
one orbit fellows very closely the other orbit {or its time-reverse). However, the orbits can differ
in the way in which the segments are connected.

The two siinplest possibilities are shown in Fig. 1. 1f orbits are composed of only one segrment
then the two ends can be connected in only one ways It then follows that the two neighhonring
orbits arc either Ideswtical or one i3 the time-reverse of the other, Including only these pairs in
the deuble sum corresponds to the diagonal approximation, which yields the correct leading
crder hehaviour K (v} ~ 27 as 7 — 0 [3].

Two segments, on the other hand, can be connected in two ways, leading to orbits with or
without self-intersection al the connection point, as shown in Fig. 1. In order for these pairs to
exist and to be close, the crossing angle < has to he amall. Then it can be shown in a linearized



approximation, that one orbit i3 indeed in the neighbourhood of the uther.

In the following we cvaluate the comtributions of such pairs of orbits to the spectral form
factor. In order to avoid further assumptions and to keep the caleulations simple we restriet
sttention now fo systewms with uniformly byperbolic dynamics, specifically we consider the
repressntative example of the geodesic motion on Riemann surfaces with constant nesative
curvatare (8. Then the quantifies A, 5, and 7, in {3) depend only on the length of an
orbit, and A, js pesitive. Wo assume that the systems have no farther symmetries and are
non-arithmetic so that the typical degeneracy of a lenpth of a periodic orbit is two. For these
systems the action difference for the paivs of orbits being considersd here has been ealculated
in the linearized approximation for small crossing angle £ in [7] and is given by

pi‘Ei
AS(e) = 4
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where A is the Lyapunov exponent of the system, and p and m arc momentum and mass of the

particle.

The sum over these pairs of orbits can be evalnated by summing over all self-interscetions
of periodic orbits with amall crossing angle £, because for every such self-intersection there
exists A neighbouning periodie orbit with action difference AS(e). The sclfintersections are
determinerd by istroducing a function which selects them. This is done in the following way.
A sclfinterseetion of & perlodic orbit with period T divides the orbit into two joops. It can be
characterized by the crossing angle £ and the total time ¢ along the shorter of the two loops,
f = 7/2. Furthermore, we introduce an angle variable ¢ that specifies the direction of the
velocity, and a vaviable ¢ that measures the time along a periodic orbit. If at any time # along
a periodic orbit gt + £} = g(£) and @ + &) = $(#') — 1 4+ £ then this periodic orbit has a
seif-infersection with opening angle £, and traversivg the eorresponding shorter loop takes time
f.

Correspondingly, we can express the contribution from pairs of the two-loop orbits to the
form factor as
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where the function f., is given by

feal@(t) p(#]) = 7| 6@ + 1) — () + 7 —2)
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Here |J[ = +* | sine|/,/7 is the Jacoblan for the transformation from the arginnents of the three
delta functions to the three integration variables, where v is the speed of the particle aad g is
the determinant of the metric tensor. The three integrals give o contribution cach time that ¢
is at the beginning of a loop with time ¢ and opening angle ¢. The eholes of the linits of the
integral over £ is not important since the main contribution in the semiclassical limit & — 0
comes from the asymptotic behaviour of the integrand at ¢ = 0. In (5) the amplitudes and the
poriods of the nelghbouring orbits were sct to be eqmal since (he difference does not comtribute
to the leading semiclassical order.

Oue of the important properties of lonyg perodic orbits is their uniform distribution on the
energy sinface in phase space. It implies that the sverage of a given phase space function
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f{g,p) along all perindic orbits of a cortain period T can be replaced, in the limit 7 — oo,
by an average of this function over the energy surface in phase space [9]. More accurately, the
following asymplotic relation holds as T — oo

3o AL PHT — Ty [T flgte), p())
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where B{£) is the volume of the energy surface in phase space.

The relation (3) is in the furm in which this property of the periodic orbits can be applied.
The semiclassical hmit £ — f} is performed with the condition that 7/ — oo, The mean
dengity of states being d{E) ~ TL{E}/(27#)?, this implics that T — oo and thus the leading
order semiclassical behaviour arises from the large 7" behaviour. Applying the uniformity of
the periodic orbit distribution and performing the integral over the energy delta-function one
obtaing
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and g(f) and ¢t} are the coordingies of a particle at time ¢, whose inftial conditions at £ = 0
are specified by gy, ¢o 2nd energy £.

The quantity pele, £) has o direct classieal interpretation. It is the probability density for a
patticle with energy F to retwrn after time ¢ to itz starting point with a velocity that deviates

from the initial veloeity by an angle £ — =, In the same way as for the diagons! approximation,
one thus finds that the periodic orbit sum is related to a transition probability density in phase
space [10}].

Gur aim is to determine the leading order behaviour of {8) as A — 0 which, as remarked
above, depends on the long-time behavionr of pg(z, £). For lung times pele, £) approaches onc
over the volume of the encryy shell in phase space, bacause the partide is cqually likely to be
found anywhere on the energy shell, ie. pe(e, ) ~ L/E{E) a3 ¢ — oo, Inserting this into {8)
and applyving the method of stationary phase yiclds

Pt L) f & ip*s? _
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T o ds exp Zmfid ¢ (10)

and so the leading order term as i — 0 vanishes, This implies that one has to take into account
the next order terms. A closer analysis of {5) shows that the important term to eonsider is
the next to leading order behaviour of pgle,t) a3 £ — oo, Quite surprisingly, the two-loop
cofibribution does not originate from the crgodie limit of the probability density prle,t) but
from the approsch to this Hmit.

We have to consider pg(e, &) in more detail. Tt is a classical transition probability density
and can be expressed in tertns of clussical trajectorfes. These drajectories are all time ¢ loops
with opuning angle . Consider one sueh loop as shown in Fig. 2a. Every potut in the vicinity of
Its stariing point s the starting point of ancther loop, cne cxample being shawn by the dashed
line. To determine how angle £ and time ¢ change with the initial point we introduce a local



Figure 2: a) A loop with opening angle ¢ (full line), and the lucal coordinate system at its
starting point. &) Loops with the same opening angle £ whose traverssl takes time £ form a
vontinous family which have their startiug points on a curve of constant distance o from a
periodie orbit,

coordinate system {see Fig. 2a) and linearize the motion in the vicinity of the loop. The resalt
is
g . = M ,
vdt=2cus§dsg, vide = =2 sin 5 tauhidaz {i1)

One finds that angle and time change only in the s, direction, but not in the 5, direction. This

iz a partienlar praperty of the uniformly hyperbolie dynamics. After integrating the cquations

(11) one arrives at the following conclnsion. The loops with fixed & and £ form continuous

onc-parameter families. All the initial points of the loops within a family He on a curve which

has a constant distanee {denoted by o) from a perfodic orbit as shown schematically in Fig. 2b.

‘The relation between the loops and the periodic orbit is given by
Aty

At
cosh — gin E = cosh —=

Z 2 2 (12)

where 1y i8 the period of the perlodic orbit. It is a remarkable property that any loop is
uniguely related to a periodic orbit into which it can be continuously deformed throngh a serics
of other loops. Puil another way, this implies that any self-intersection of any arbitrary classical
trajectory is uniquely related lo a periodic orhit, becanze a self-intersection is the indtial point
of a loop.

We examined this property numerically. We chose a large number of long random tra-
jectories on A Riemann surface with constant negative curvature [11] and reeorded all their
sefi-interseetions. For every self-intorsection a point is plotted In the (z, £}-plane, where = and
t are the opening spgle and traversal time of the corresponding loop. The result i shown in
Fig. 3. As expected, the points form continuous lines that start at the periods of the periodic
orbits (the +-vabies at. £ = ). Onc can ebserve a logavithmic divergence of the eurves at £ = 0
which is implicd by Eq. {12). The full line in Fig. 3 is an evaluation of Eq. (12) for the sceond
family of loops, and it is fonnd o be in parfect agreement with the numerical result.

We eantinue by expressing pge(s, ) in terms of the clessicsl trajectories. By cvalnating the
integrals over the delia-fuactions in (%), pgle,?) can be written a8 & sum over all families of
loops with opening angle 2, which arc labelled by € in the following. Alternatively, by using
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Figure 3:  Numerical result of the search for loops with opening angle £ and time ¢. Grey scales
are propertional to the mrmber of loops found in bins in the (g, #)-plane.

the relation (12), pg{z,t] can also be expressed in ierms of the periodic orbits labelled by £

1 E Ty, oash{Ad o) d(r—T¢)
B{L) £=£  sln|ef (Tr 2y ~2)
_1 TEU Hi-Tr]
E(F) Efn o (Tt Mgy —2)[TT My — pdues® §) {12}

pelz,t) =

where M aud My, denote the stability matrices. We remark that a further use of BEq. (12)
vields

PE(e,t) = pelm, &) . (14}
"This meats that the distribution p{z, £) is identical to the refurn probability density p(w, #y) at
a shifted time !y, the relation between t and £y being given by Eq. {12).

Eq. (13} is now applied to find the next fo leading order behaviour of the time integral over
pe{e. 4] as t — oo, We asswine that from a certain time Ty(z) un we can replace pele, £ by i6s
ergodic limit (2amA)~'. This time Ty{e) is chosen to have the same e-dependence as the time
of the families of loops (like, for example, the dashed line in IFig. 3). Thus Ta(s) is related to
To{m) by an eguation identical to that betwesn £ and £y (Eq. (12)). For ¢ < Ta{e) we replace
pe(e,t) by its cxact form, Bg. (13). The approxdmation can be made asymptotically exact by
letting Th{r} — o0 as T — 0o, We find

TF2
1T
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= ﬂ?—f{—g']’l[—d + ennst + O{e?) {15}

where here and in the following constant denotes independence of 2. In the semiclassical limit
only the ssymptotic behaviour of Eq. (15) as ¢ — 0 is relevant and from the analog of Eq. (12)
we find Th{e) ~ m%ngE + const. This logarithmic divergence can be interpreted as follows,
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For stnall £ the two legs of a loop need & certain minimal time in order to separate enough to
enable the loop to close. This time can be estimated by requiring that £ exp(AE/2) is of order
one, yiclding the logarithmic dependence above. Substitution into (8) results in

g =) 1pfc? O - 3k
K31y o Iﬁﬂ% Re [, de ek %
= B2 Re [de’ o ¢ logle") . {16}

k1

Evaluating the real part of the last integra) finally yields K (r) ~ —27? in agreement with
the 72-term of the GOE form factor in (2).

In conclusion, we have shown that the off-diagonal eontributions to the spectral form factor
from two-loup orbits yield a r%-term In agreement with random matrix theory. Iis origin can be
traced to propertics of loops with small opening angle ¢, 1t is expected that hicher-arder terms
in the expansion of K7} are related to multi-loop orbits, & point which is under investigation.
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Abstract

We constder off-diapon:] conlobotions o double stang over peciodic cebits
thatl arige o semiclassicat approximations for speetral statistics of classically
chactic giantuin systems, We identity pairs of perigdic orhits whose actiony
are strongly correlule]l Bor a class of switems with unifermby ypesbolic
dynamice, we demoensirale that these pas of ocbits give rise toa 1% contri-
bution [ the specieal form tacior K1) which agrees with andom matrx
theors: bdaost interostingly, this conteibution has 15 otigin 0 o2 oec-le-
leading-order behaviour of e clussical distribotion (wectien For long dees.

i. Imroduction

Cuantum systems with disorder or with & chaotic classical
counlerpart share the remarkable property that energy
fevels, eigenfunctions, transition amplitudes, or {ransporl
guantities exhibit wniversal features. They are independent
of the details of the ndividoal system and depend only
on its syounetries. In order to see this universality, it is
necessary to  consider statistical properiies, such as
fluctnations in the distributions of energy levals. Tt was orig-
inally conjecturcd [1] and is by now numerically well estab-
lished that the spectral corvelations of classically chantic
gquantum systems, in the semiclassical Hmit A — 0, apree
with correlations betwesn eigenvalues of random matrices
[2]. ‘

While such a copnection with random matrnix thoory has
been proven for disordered systems uwsing fleld theoretical
methods [3] (o the so-called ergodic vegime), 1l remains
an oulstanding problem in the theery of clean (disorder-free}
quantum systams with a chaotic classical limit. Tt huy been
proposcd fo extend the field theoretical approaches for dis-
ordered conductars in order to treat clean chaniic syslems
as well |4,5). However, computing coergy level statistics
for a given single chaotic system requires to replace the
ensemble averssge over impurily configurations, mberent
to disordered devices, by an average over an appropriate
raoge of energy. This cuuses dilliculties which are stll dis-
cugsed controversially (for a recent collection of related
review articles sce Rell [6])

Semiclassical theory being based on the Gutzwiller trace
formuly | 7] represents the other approach lowards an under-
standing of spectral statistics. I provides the most direel link
bolween speetral quantities of the quantum Hamiltonian and
properties of the chaotic dynamics of the cormespomding
classteul system. In view of the fact that semiclassical theory
can approximate quantum energy levels with a precision at
least of the order of the mean lovel spacing, semiclassics
should be appropriate to cope with spectral correlatioas,
at least on enercy scales larger than the mean level distance.

- - e

A central quantity to characterize speetral siatistics is the
spectral bwo-point coreelation function, R{y}, involving o
product of two densities of states with energy separation
5. A semiclassical approach to R{y) is based on approximat-
g the densitics of states by the trace formula, which
expresses them by sums over coniributions from classical
perigdic trajectories. Hence a computation of R(x) involves
the evaluation of a double sum over classical trajeclories.
Along this line, semiclassical theory has been applied [3-10]
1o better understand the observed universality in quanlum
energy spectra. 1t wis shown [9] that by including only pairs
of prhits with themselves or their time-reversed partner,
the so-called dinponul spproximation, and by employing
mean properties of classical trajeetories [3], the energy level
correlator aprecs with random matrix theory in the limit
al lotig-range correlations. These results were exlended in
Ref, |10] Lo deseribe the leading oscillatory behaviour of
Rn) by linking it to the diagonalt approximation. To access
the speetral regime beyond these asymptotic results, the sub-
ject of this article, requirss the dircel calculation of
off-diagonal contributions from pairs of different classical
paths, and necessitates lurther insight into classical cor-
relations beiween trajectories. Although the existence of
such correlations has been obicrved in several systems
[11-13], a deeper understanding of the origin ot these cor-
relations in generic systoms und a systematic semielassical
eviluation of the correlation fanction Ry} or its Fourer
transform, the spectral form laclor KfT), is suill missing.

With this article we approach this open question and poinl
out clasgical correlulions belween periodic orbits and their
thle Mor spectral statistics in the semiclassical imit. We pre-
senf pairs of difierent, bul closely related periodic orbits
in two-imensional systems, and we provide evidence (hat
they are relevant for the first correction Lo the dizgenal
approximation for the spectral form factor. These orbit paics
mvolve trajectaries which exhibit scll-interscetions with
szl inlersection angles. They resemble ballistic analogucs
of corresponding objects in disordered systems [14,15], Le.
dilTusons and cooperons that are connected at Hikami boxes
[16]. We note, however, thal we deal here with entively classi-
cal paths, while the notion of the Hikumi box involves
fquantum} scattering, ie. non-classical processes [13]

We (irst compute for a given pait of palhs the dilference o
thelv classical actions, Employing statistics for the seli-
erosyings of the trajectories we than semickissically evaluate
their contribution to the form factor. We find that this con-
tribution vanishes when the leading long-time behaviour
of the crossing statistics is applied. We Lhen show that
the next-order corrsction Lo the long-time asymptotics is



imporiant for spectral statistics, By numerical examinations
on a Riemannian surlace wilh consiantl negative curvilure
we (ind thal this ¢orrection has indeed the form that is
reguired for an agreemnent ol spectral statistics with random
mytrix theory.

2, Off-diagonal coatributions to ithe form factor

Grutzwiller’s trace fommuly provides 2 link hetween the
energy spectrum of a quantuem system and the periedic orbits
of its classical Emil. [1 &5 a representation for the density of
states in the form |71

i
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where #(F) is the mean density of states and - labels the peri-
odic orbits of the classical system that is assumed to be
chactic. Each arbit contributes in terms of its classical action
&, and its amplitude 4, which depends on period, slability,
and the number of self-conjugate peints of the orbit.

Oae of the main reasons (or the mleresl in the trace for-
mula in reeenl years hus been that it allows one to investigate
thecretically the conjectured wniversality in the statistical
distribution of coergy levels, Consider, for example, the
spectral form tactor that is defined as the Fowrier transform
of the speetral two-point correlator,

‘ dn 2eiTiE
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where do(E) = d(E) — #(E). Tt is evaluated by averaging
over an enetgy interval that i small in comparison to E
butl contains & large number of levels. For chaotic systems
with time reversal symmelry, which we consider in the
following, the form factor is expected to be idenfical with
that of the Gaussian Orthogonal Ensemble (GOI) {2],

2t—zlogll + 27} If 71,
K9y = ar 41 3
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il = is in the so-called universal Tegime © = 1., (where
Tery = Y in dimensions). For small values of © it
haz the expansion

EFRy o2t {4}

The semiclassical theory of spectral statistics has been devel.
aped int order 1o (ind an explanwion lor the observed agree-
ment with rapdom mairix  statistics. Itz aun is to
altribule Lhis eniversal propecty of the quantum system
to generic properties of trajectories of the corresponding
clissical system. For the spectral form  Factor the
semiclassical approximation is shlained by inscrting the
trace formuia (1) into Eq. (2) and evaluating the Fourler
transform in leading order of f This leads to g double
sum over periodic orbits,

Irhd(£) 57y Y 5 .
(5
where T, =35,/4F s the pertod of an orbil, and
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T= T,r’{?.rzﬁf;'{E]l}. Due to the exponential proliferation of
the number of periodic orbils with their period, the doobie
sum contains a huge number of padr terms. Most of the paiss
consisl of periodic orbits with actions that are uncorrelated,
and iheir contributions cancel each other when summed
over. L s expected that the non-vanishing contributions
come from a relatively small number of pairs of orhits which
are correlated.

The slrongest correlation occurs belween orhils which
have identical actions. In the dingonal approximation only
those pabrs of orbits are considered which are identical or
related by time inversion. Their contribution to the form
[aclor can be evaleated by applying a classical sum role
for periadic orbits [8]. In this way one obtains the leading
term of Lhe GOE lorm [actor For small values of €
Kty = 2z [9].

To go beyond the diaponal spproximation requires the
evaluation of pairs of different orbits which are not related
by any symmelry. In this arttele we wish Lo provide un explic-
nation where these off-diagonal contributions come from. In
particuler, we will diseass m detail the nexl lerm in the
expansion (43 of the form factor for small 1, namely the term
—27°, We will provide evidence that it can be obtained in
two-dimensionyl sysiems Irom pairs of self-intersecting
orbits with small opening angles and orbits in their cloze
vicinity,

We start with some geperal considerations. For a chaotic
systam it 1s reasonable Lo cxpeet that correlations exist only
beiween periodic orbits which are close in coordinale space.
One therefore needs a mechanism by which two o more peri-
odic orbils can be obtained which are different but which arc
located almaost everywhers in close vicinity to each other in
coordinate space. Hints on their topology can be obizined
from dizgramsin pecturbation theory for disordered systems
[15.17], or From classical correlations between periodic and
difftactive orbits [18], The basic idey 15 that the peredic
orbits consist of different segments. In each segment, an orbit
(olloras vory elosely its neigh bouring orbil or the lime-reverse
of this orbit, but the orbits differ in how these segments are
eonnected, In order Lhit the segments can be connected in
differant ways they must torm loeps. Thereby, one obtains
g semiclassical loop cxpansion n close analozy to the laop
expansion in diagrammatic perturbation theory.

Lel us constder the simplest example. 1L consisis of a pair
of two periodic orbits with twe leops in coordinate space
as depicted in Fig 1. The two orbits follow one loop in
the same ditection and the other logp in the opposite
direction. For that reason these pairs can exist only in sys-
lemis wilh Gme-reversal nvarance.

In the following we argue that such pairs of classical peri-
adicorbits ndeed exist. Let vs assume that the opening angle
£ {we also call it crossing angle) iz very sumall, As we will see
later, it is sufficient to consider only this case. For small
¢ one can desceeibe the onter orbit by lineaciring the nrotion
in the vicinity of the inner self-intersecting orbit, This leads
to the following conditions for the owler periodic orbit:

& B 5
(P{}'z + F-x’lll) =k (p(:»*u - EHE}) '

(o)l tn)
plya—5/2) T \plm ey

(6}



Fi o An example of o selFineriscling classical periclic ochit with small
opeoing augle & and itz neighbouring periodic orbl. The local coarditnate
systema I5 pricoied along the middle of the apening angle =

L and & denote the two stahbility matrices of the lelt and nght
foop of the inner orhil, respectively, and p s the absolwe
value of the momentum at the crossing, The distances §;
and S; are shown in the (gure, and ¢, and 7, denote the
angles between the horizontal line and the tangents to the
outer orbil in the points P oand Pz, respectively. The
expression (6) consists of four inhomogeneous linear
equitlions for the fowr unkoown quantities §,, &, v, und
v and can be solved. Therefore, the outer periedic orbit
exists in Lhe linearized approximation. A closer examination
shows that il behaves o Lhe following way. In point Py Lhe
outer orbit is exponentially close to the stable direction
of the tizhl inmer lopp. in the (ollowing, il approaches
the inner loop exponentially fast for some time {for about
half the loop) untd i slarts Lo deviale [rom it wgain. Tn point
Po it then almest reaches the stable direction of the
time-reverse of the left mner orbit, and again approaches
it exponentially fast uneil it stacts to deviale [rom the left
loop again at about half the loop.

The aclion difierence between both orbils can be oblamed
in the linearized approximation by expanding the action up
Lo second order around the inner orbit. COne finds

AS(e) 52 “; (51 + 52) . 0

The commaon sedulion of the cquations in (8} leads Lo a locar
relation between the angle £ and the distance d; + &,

Rya(TrL +2) + Lyo(TIR + 2)
Trilirk) -2

l$| + 32 = e, (E}
so that the retioe differencs in Eq. {7) depends quadratically
on £ In By (8), If denotes the stability matrix for the
time-inverse of the inoer left loop. In terms of the mairix
clemenls of L1 is given by

- Lon L2
=] . by
(f-zi Ly ) ®)

The action difference AS{(e) predominantly oripinates (rom
the regicn around the self-intersection.

To summanze, there is the Tollowing recipe for linding
pauws of orbits as shown in Fig. 1. One has to lock for peri-
odic orbits which have sclfiinterscetions with g gmall
crossing angle & The self-intersection divides an orbit inte
two loops. The prediction s thal there oxisls 4 neighbouning
periadic orbit which follows one loop in the same and
the olher loop in the opposile dircetion, and that il has a
small action differance given by Eqs. (7)) and (8). We tested
this prediclion for clussiesl chaolic molion in the hyperbola
billiard, for whiclh we have a long list of pericdic orbits avail-
able {19]. ' We looked for orbits with small crossing angles

T M . eean

and checked whether the neighbouring orbits exist and have
the predicted action diifference. We found that this is indeed
the cuse. For exumple, foran orbit pair involving a long orbit
with a crossing angle of 2.6 we found the two lengths
{corresponding  to scaled  aclions) ) = 24.08676 and
o= 2408469, The difference is Al = (L0207, comparcd
to Lhe theoretical value of Alg = 000208 abtzined from
Eqgs. (7) and (&),

In arder to proceed we have 1o evaluate the number of
seif-intersections of perindic orbits and the distriboetion of
the crossing angles. We start by caleulating these quantities
for penerzl, non-perodic trajeciories. The corresponding
results [or periodic orbits can be inferred by using the pric-
ciple of uniformity [20,21]. According o it, averages of a
gusniily glong generic nen-periadic orbits lead to the same
result as averages over all perodic orbils, iF Lhe lutter are
performed with relative weights which take into account
the different stabilities of the periodic orbits. The dervation
for the crassing aneles s performed in the appendix by using
the ergodic property of chaolie systems. As a resull we hind
[or a trajectory with time T that the average numher of
selfuinterscetions with an opening angle in an interval de
around £ (0 < ¢ <) is given by

Thv) sim e

g — {11y

e, Mde ~ for T — no.

Here, Ple, T 15 the density of crossings of opening angle 2 for
trajectories of time T, 4 is the accessible wroy ub energy A,
and {7 iz Lhe wverape of the velocity square over 4 (see
the appeadix for an accurate definition.} By an integralion
over @ it follows from Eq. (10} that the wial number of
sell-intersections of a trajectory of time T increases as

{772

— (1)

M(TY ~ for T — oo
We want to use this classical information to evaluatc the
contribution of the pairs of double-loop orbits to the spectral
form (actor. For peneral chaotic systems this requires
turther assumplions, in particular that the crossing-angle
distribution is independent of elements of the statlity
matrices. Then one can show that the contribution to the
form factor vanishes iff the leading behaviour for large T,
Eq. 107, 35 used. We will not perform this calculation for
general systems. Instead, we will focus from now on onlo
a particular class of systems with wwformly hyperbolic
dysamics for which the calculations are simpler and oo
Muriher assumption is needed. This is the motion on Riemann
surfaces of constant negalive curvalore [22]. There the peri- |
odic orbits do not have conjugate points, and they all possess
the same Lyapunov exponcni. These systems have the
addiionyt advantape that averages along perindic orbits
need not be weighted in onder Lo be identical 1o averages
alopg penerie trajeclories. In these systems the stability

matrix of an orbit of time 7 hus the simple form

cosh AT

— ¥
M= (mlsinhﬂ.? (12)

(redy”t sinh AT
cosh AT ’

where mo1s lhe mass of the particle and 2 the Lyapunoy
exponent of the system, With Eq. {12) the actien difference,

PR PO EE T



Ey. {7y with (8}, simplifies 1o

(13}

By using Egs. (10} and (13}, we can evaluate the contribution
of the pairs of orbits W the speetral form factor. We do this
by summing over 2l intersections of angle & that cecur n
periodic orbils, and then inlegrale over & We account for
an additional degencrucy Faclor of two in Eq. (5) owing
to thme reversal invariangs, Furthermors, we taks twice
the regl purl, sinee there is 2 corresponding complex conju-
gate term in the double sum over periodic orhits. Altogether
wi oblain Lhe following cxpression:

4
B ’m"—-r-—-—-Rufmnli: AP, T
ST ERe ) Z| P Pz, T)

x expliASE)/ MHT — 7}

4 o T.Q
R — d A7 () ———= Ple, T
T f e j; T gz P D)

X exp(ASE BT — T
4 f'" Py (ws )
et gef de
2mrad® b A 25T Gnen
=0 (14

1t has boen cevaluated by replacing the sum over periodic
orbits by an wtepral with density

AT
o7y ~ ZD)

and by using |4, = i"'2 cxp(—AT,). In the limil & — 0, the
main contribution to the integral comes fTom angles & closc
Lo zoro. For obaining the leading semiclassical contribution
wa could therefore take only the firsl lerm in the Tuylor
expansion of sinz. Furthermore, we extended the integral
to infinity. {For convergence gueslions 10 should be con-
sidered with a momentum p that khas a small positive
imapringry parl that is sent Lo wero aller the integral is per-
formed.) The result vanishes since the result of the inte-
arution is purely imaginury.

After a closer inspection of expression {14} it is, however,
not surprsing thal the resull mves vero. In order Lo perform
the semiclassical limit, one has te translate the time T Imto
T by the relation ¥ = 2xAd(F)r. and then lake the limil
fi— 0. Since In two-dimensional systems AE) ~ mAf
(2mi®), one linds thal the expression in (143 s of order
1. Without taking the real part the expression would
diverze in the imit & — 0 Moreover, it would be of order
¥ whereas we believe that it should be the lowest-order
ofitdiagonal contribution and thus be of order ¢,

These considerations indicate that the correel conlr-
bulion Lo the form [aclor might arise rom a 1/ T corvection
to the asymptotic law (1) for the classical density
F{, T3, In the [oflowing we fiest show that a muoliplicative
correction term of the form

for T — oo, (15

FAT

1- = (16)

1
with AT = Elmg[c £},

where ¢ 15 an arbitrary constant, leads 1o the raodom matrix
result, We then conlirm nemerieslly Lhat such 4 correction
indeed exisis.

L AR

e i = aem e e e e mn g mmmemmiaaen ———

Multiplying the integrand in Eq. {14} by (—4AT /¥ leads

(o
4 Re d vy ey dloglen
2ndEy Jo A 25 P\ k)T

4 F HET? :
=———Re dn-———expl— ]ogv’?
i) Sy M ima SR

= 0t

Khgity =

()

where, after (he change of the integration variable, all
further arguments of the logarithm could be neglecied sinee
they lead 10 i vanishing conlribution. The final result agrees
with the random matrix expression in Eq. (4).

In the lollowing we examine numerically whether 2 cor-
rection to the law {10) of the form (16) exists. For thut pur-
pose we consider a Ricmanmian surface in form of an
notagen. We choose random trajectories, follow them for
a fixed Iength £ and delermine the mean density of the
tntersection angles. Since we are interested in the comreetion
to the sasymplolic fomm of this density we need to have good
statistics. The numerics is carried out with 50 million run-
domly chosen trajectories of length I = 100, and half a
million trajectories of length L = 1008 (the arca of the sys-
tem is A =4w). We use dimensionless units in which
v=Ad=land L =T,

Firsl we tesl the asymptotic law (10} by calenlating

wA

o - (%)

ol T = Ple, T e

Far long times this fenction should agree with i normalized
distribution of crossing angles of the form sin(e)/2, and
we compare it to this curve in Figs. 2(a) and {¢). In the Grsl
ol these lwo [igures the results for trajectories of length
L = [{0 are presented, Here one can still see a samall differ-
ence between the two curves. When going to the rosulls
for longer trzicclories of length £ = 1000 in Fig. 2{c),
however, this difference cannot. be discerned any more.

05 ; e ] D —————————— e 3
! i i i i
0.4 :' al ’/ \\ - oy b T
F ! & H - i
oonal i o4 EEr
ni : E i = a1k B
= oz! F i i :
Py 2opisd 8
B &S ., o ] .
i WiooW o :
1 i i
- H a8k )
] xe x i) 2 T
£ £
{:]5 = v eeememrmeme - D.I‘.'Ité .
s O \ - as s
—_ : kY C oS .
A n, B ;i
e H i-: - i
E 02 D 3 “‘!:: P ;
ol - / I"'_' ™ e
o p— 0035
u] w2 n 0 w2 .3
E &

Fir 2 {a) and {&): The distribution of coesing areles ple, T (] line) in
camprarisan to sinfz)¢2 {dashed line), evaluated along teagectorics of length
L= 1W0and L = 1000, respectively (b and id); The dewviation af plz, T [rom
sin £ (Ll line) in comparizon with the lng-disichution {dashed Bue) tiat is
deseribed i the toxt, cvalusted alone tovjectories of lengilt £ — 1080 and
£ — 10H], respectivels



En Figs. 2({13) and {d) we investigate the devistion (rom (he
asymplotic law (10} We do this by plotting the distribution
2p(e, TV sine - 1. As argued above we capect thal tns
deviation is responsible for the =* term of the spectral form
fuctor. Tn order to obtain an agreement with random matrix
theory, the ploited funetion must have the form
(dfogs + constd/ (AT tor small ¢ as follows [tom Eq. (16).
This expression conlains onty one free additive paramster,
which is of no telovance for the lform factor. We [led this
parameler and plotted this curve akse (dashed lines in
Figs. 2{b) and (d)}.

The agreement hatween the dillerent corves in Fig. 2(k}
and alse im Fig. X{d) is remarkable. The random mairix
prediction requires coly an agreement For small values of
g, but there 1% an excellent agreement almeost over the whole
range (0 = ¢ = 1. In our opinica this result is the first clear
indication on the origin of the off-diagonal contributions
lg the form factor o the perturbative regime near 7 =10

3. Discassion and Conclusions

This cleae-cnt aumerical resuft suggests to draw the
following conclusions:

(Y [l is possible to systematically evaluate off-divgonal

contpbutions to the spectral [orm factor by the

semiclassical methad,

The 1% term ol the spectral form factor is indeed related

to the eightshaped crbits in Fig. 1

(7i7y The 1° term originales [rom the next-to-leading asymp-
totic form of the disteibution of crossing angles for luree
T.

For pencral systems the calculations will be more com-
plicated. Cme reason is that Maslov indices are present.
A second reason 1s that the stabilities of the arbits are, in
zeneral, different, As a comscquence, it is netl Lthe pure dis-
tribution of crossing angles which mattars, but a distribution
which depends also on Masloy indices and elements of the
sluhility matrices along the loops. A complete amilylical
derivation of the ¢ coniribution, purely on the basis of
classical chaotic dypamics, remailos to be parformed.

The fact thul Lhe conlribuetion (14) vanishes in the
sermiclassical limit and that oaly the term (17) adsing (Tom
corrections to the long-time distribution of crossing angles
prevails, shows at least a formal analogy with the situalion
when evalusting twodloop corrections 1o the  density
correlator for a diffusive system using diagrammadic per-
turbation theory. There, the contribution from dressed
square Hikami hoxes vanishes to leading order and only
the nexl-order expansion in eserey leads to the final result
[15].

The prablem Lo compule off-diagonal contributions to the
spectral Form factor is closely related to cormesponding guus-
tions which inwolve cnergy averages over producis of
advaneed and retarded Green functions. One prominenl
example is mesoseopic quunlum transporl. Forclean chaotic
systems u semiclassical theory, which adequately and quan-
titatively describes weuk lovallation, is stll lacking {23-253).,
The guestion to obtain the t* term in the spectral form factor
has much in common with this long-lesting problem o
semtclassically compute weak-localization correetions o
ballistic quantum jransport. There, it was already suggested

(i)

to consider cerfain puirs of initially close classical orbits
[24,26]. Proceeding n the same way as for the pairs of cor-
related perfodic two-loop orbits we have computed the
action diffcrence Jor orbit pairs relevant to quantum
transport. It also scales gquadraticallty with the sell-
intersection angle & bat with a different prefactor. Agwin
deviations from the asymplotic form  of  crossing
distributions must be included to get non-zero results |27].

Another field of upplication of our findings are
mesoscopic Andreey billiards, t.c. hallislic cavilies coupled
to superconducting leads. Semiclassical approaches (o the
proximity effect in thesc syslems so far cely on the diagonal
approximation [28-30] and an extension to off-dizgonal
paths alopg the lines presenled here appears promising,

To conclude, we have shown that in chaotic systems a
class of ofi-diagonal pairs of peniodic orbits exists which evi-
dently exhibil sciion correlations. We have demoenstrated
lor systems with uwniformly hyperbolic dynamics that in
the perturbative tegime (correspoading to the small 1
expunsion) (hese orbit pairs vield a ©° contribulion Lo the
spectral form factor which agrees with the random matrix
result, Our results for the two-loop orbits demonstrate that
the semiclassical theory is a powerful tool to deal with
spectral statistics of individual disoeder-lree  quantum
systems. We believe that, for systems with lime-reversal
symmetry, the higher-order contributions to the form Fctor
invabve periodic orbits with three and more loops. For sys-
tems without #me-reversal symumetry the considered
twa-loop orbits do not exist, and contributions fTom orbils
with mere Ioops should cancel muinally. A systematic com-
putation of highet-order contributions from multi-loop
petiodic-orbit configurations remains as a chatlenging Mitare
DIGHITATT.
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4. Appendix: The density ol angles of self-intersceiion

In this appendix we detive the leading asymptotic form of
the density e T) for long tmes ¥ The quantity
Pie, T de #s defined as the average number of scll-
intersections with an opening angle in an interval de around
# of trajectories of time ¥ in @ chaolic system. For the
derivation we cmploy the ergodicity thecrem which can
be formulated in the form

fd*qd’p S(E — Hig. p3} Fig.5)
f&qd’p 8(E — Hig, m)

r
fu A figlo), gl ~ T
(19

It stules Lhat for almost all initial conditions the integration
of a sufficient]ly smoeth function £ along a trajectory of time
T is, asymptotically for large T, given by ¥ times 1he phase
space average of this quantity. We choose in this appendix
4 simple, heuristic derivation by employing the ergodicity
theorem for a function [ that has the form of a dells-

T — oo,



tunction. A rigorous derivition would require the wse of  References

smoothed guantities.
The densily Pic, T) 15 defined as

Ple. T
] T T
=(§ ﬁ a ﬁ de' 11 3(g(6) — gl (e — 140D, v(f’)]:))
(20)

where the averape is Laken over different initial conditions
and w(r), »{r')] denates the angle between wi) and #(#)
The quantity J iz the Jacabian for the transition from the
argument of the Girst debta-function to ¢ and &

W1 = 1%t} — X{W] = i)} = $(2)]
= w{2) vt }sin | ul), v} -

We apply the ergodicity theorem twice to replacs the time
integrals by phase space averages. In the fellowing we
are mote gengral than in the remaining article by allowing
Hamiltomians of the form & ={1/2m}p — (/A +
Fig} = (m/2n + ¥{g) with the possibility of 1 vector poten-
tial thal breaks time reversal symmetry. Inserting Eq. (19)
into Eq. (200 results in

(20

2

Pl T~ IT 4
[Pl pd" 3 S(E — Hig, ;WNE — Hig 2 )iy = Vi — )50 — v, 1)
[l o’ g pit B — Hlg, NSE — tHig, )

_ I [ diquedrdd v (£ — H(g, PRAE — By FN2vY sineily — o)
I jd!{.r\ﬂw.!'qbdzfﬁ"dwddr’éfﬁ' — Mg PdiCE - Hir, gl

.2 2
- 1; Alsinajd?q;{f— . (27}

Here the integration variables have heen changed from
Cartesian coordinates [or the momenia Lo polar coordinates
for the velocities. 4 15 the accessible area at energy E and wo
define {1’} as average of the velocity square over A:

1 2
A= d?g, v =_f dig S — Figh .
VigyzE Alvigey M
(23}
With this definition we arrive wt the fingl resull
T2 i
Ple, T} ~ ;;%, T > oo, (24)

where £ varics between 0 and . The 72-dependenee of the
tonal nomber of crossings (without explicit prafacior) has
been proven in Refl [32]

1.

2.

13.
14.

14,
17.
. Sieber, M., I. Phva. A 33, 6263 (2000),
19,

20,
M.

.
24.

9.
30

3.
32

Berhigas, O, Giannoni, M. I and Schmit, £, Phyvs, Rev, Letr, 53, 1
{1984

Boligas, 0., in “Les Houghes 198% Session LIT on “Chacs and Ouean-
tum Physics™, (edited by b, I Glanneni, A. Voeros aml T Zinn-Jusling,
(Marth-Haolland, Amsterdanm, 1591), po 87

. Fletey, K. B, “Supersymmciry in Disorder and Chaos™. (Cambridpe

University Press, Mew Yark, 1997)

. Agam, O, Alshuler, B Loand Andesey, A V., Phys, Rev. Lert. 75,

4380 {1095).

. Muzvkantskid, B. A, and Khmetedtskii, T3 E,, TETP Teat. 62, T (1905).
. Lomer, 1L ¥, Keating, TP oand Khmelnitskiy DL T, fedilows), ©'Supee-

symmeley and Trace Fornmulae™, Nato ASL seriss valums 370 {KInwer
Academic/Plenum Pobliskers, Mew York, 1999

. Ctzadller, B, G, “Chaos o Classical and Quanium Mechanics™',

[Sprmger, New Yook, 1990).

. Mannay, J. 11 and Qezovio de Almcida, A, B, 1 Phys. A 17, 3429

{1284},

., Barry, M. V., Proc. B, Soc. Londos A& i, 229 (19855
T,
11,
12

Bogomaolny, E. B and Keating, I B, Fliye, Fev. Letl. 77, 1472 {1996).
Argaman, M. at of, Phys, Rev. Letr. 71, 4320 {1993).

Cahen, D, Primack, H_asd Smilansky, L, A, Phs, 264, FRS {1998);
Frimack, H. and Smilinskoy, 11, Phys, Bep 32T, 1 (HO0).

Tanncr, (3., ). Phys, & 32, 5071 [(999).

Sroith, B. A, Lemer, E V. and Altshwler, B L, Phys. Bev. B 58, 14343
{19987

. Whitney, R. 5., Lemmer, T. V. and Smith, B. A, Waves i Raodoo

Modia 9, 179 (1990 Whitney, B. 5., “Applyvieg trace Tornmla metlhods
W disordered systens™, PhD thests, University of Rimmingham, 1998,
Hikami, %, Phys. Rev. B 24, 2671 {1981},

Tarkin, A. T. and Ehmelnilskii, ©. E., Sov. Fliys. Usp. 25. 185 {1382},

Sigher, i, “The hyperbola billkacd: A model for the semiclissical
quantizafion of chaotie systems®, PRIY thesds, Thaiversiil Hembore,
1941,

Parry, W and Pollicetl, b, Astécizque I87-188, 1 (1990).

Orode de Almes=ida, A M., "Hamiltopian Systems: Chaos and
Quuntization”™, {Cambridge Dniversity Yress, Cambridas, TUEE],

. Balasz, M. L. and Yorms, A,, Phys, Rep 143, 109 19868); Aunch, R, and

Stoingr, F., Physica T 32, 451 {198E).

. Baranger, TT U Julebert, B, AL and Stone, &, [ Chaos 3, 865 (1993),
CArpaman, M., Plys, Bov, Let, 75, 2330 (19493); Phys. Rev. B 83, 7033

£1994),

. Richier, K., "Seiclassiet] Theory of Mesoscopic Quantmn Svetems™,

(Springer, Beclin, 2000}

. Alcingr, T, L., and Larkin, A. T, Phys Bev. B 54, 14423 (1998}, Charos,

Solilons Tractals 8, 1179 £1997,

Siebee, M. and Ricluer, K., unpoablished, 2400,

Melsen, . A, Browwer, P. W, Trubm, K. M. and Teenakker, CCW_ T,
Physica Scrpla Ta®, 223 (1997}

Schomerus, TE and Beenakker. O W, T, Thys. Rev, Loth, 82, 295]
[ESDGY,

Itea. W, Leadbeater, M., YVems, J L. and Richter, K., Prepning,
aond-mat %0510, 1900

Kfiller, T3, L., Preprint, cond-mat/ 0345, 2000,

Pollicold, M., Conuinn, Math, Phyvs, 187, 331 (1997),



PTL l\.bv"m-l-&. 6?‘”5 - Classical éjl@g &

@Hﬂ-u\l—um D

&Ha:m!tﬂ..l: '-f_{l- EZMEH }Q:_; ‘é "!‘(Ar{'

6 | &lEt‘lmJ Moy ing Cunsgon
"3 g
Qk;ﬂ-ci j‘lq#oﬂ bq.} [ Y Cw#waﬁ .

é/ﬁ‘;?lw’“} ',;{. it CL{Q:’-L‘{L Lc.)ﬂ"[o. Pa&-\LUL %ﬂ-{aumv"

Tl_l; Sew. "f"LL{:i, € X Gyt 4-60.:3

C’.- Inn'— V"hd'-mfaﬂej N

€ x poneats

{ig P"-n“‘-r Iﬂt-n“a

7 A8S SS’:j’ °&
& Sttee) 2 Plevz) So
Eﬁfﬂj + v"éj S &

ye = Y<S(e)
ﬁcz;

= L?"é“ MM—tEJ'fﬂH
g S(2) I+ fote Fr

>@V\ﬂ P e




CIDVLS:;&J—‘-' € SE*?LLEHC&. =é' &;H;smha “-V&‘ 4—(&5«1
oL, o, et bty

Sw=3e Ju £ gL,

._fa * -
fﬁ 'j)‘éﬁ-’—' f:u
f.{-- & L
—,:d ® j{'c;?;‘*_U‘(-éﬁ;hé’_!] ' g&m{e
* | {_ + = F-'-Q‘?af +.*J{‘ .,
j;.éa( ‘-fﬂgflf 5—{€Jdl ?ﬁJ
_‘E..
= .9}6(-7 g }_Lj_;_l
é'J-: 2 L X-é
Jd2

oji;-] — g'{‘"} €

S w1z Sl e
t

L Jz
A

L

TZL& Can be eyalucted Hc{mwzc;_ﬁa 02

7 ,S-zilf??& Crses dlﬂiﬂql&l—t;q,{(% ,.



@

C()[’La;l‘ a.ladbt‘L K., ? Lﬂal"— at P{"afa&q.#mh
;;F o Wav e ?‘Etkﬂ’——'t"

S//Cﬁ%)t gc(v" <7l g”%% Hf r'D<rilep

e
-« =, { th.
G-C3 Fie) é.;-;) > o]

j’n‘& ]

O s
€

J_@LL o &Ldﬂ.mm

e <)

-

@/Uﬁ
Ll
< S G gy
? L(DL"I’Y'M{- 7&‘ L
£ i T 7"'Z

{1 o @.'RJEF’J YSZ_{“,




J—ZV'-E..E- mbw‘—u‘:'wt ’?V‘& (91.%.4.@“

CF CE};“;'&} 2 ( il ) €

vkt
£
S - j[,
o

dit
P= A r-p)
&

GA

= ¥

ﬁé(r‘;f)a Sag‘ GF (7 fc};j

e Pi'::.fz. %ﬂ CHY o [9:.. o GawSSian (D, P
b+ Codow b T and widdl  seller H

Paduy 3 fﬂn#&aﬁ amd Sl e~ ‘L.L,__‘ y{:rol‘-nu- fg’“*’-x
l"'}: #ﬂa-S’WHE”M- f/OIM., ‘{L/Zl;,; ]u%w{ t§ o{aﬂﬁ

s 7 Qe = L2, v Tovd
QO ‘—’% Q{.’, ;Qa-fii‘j_abﬁé
ﬁ:J‘l _..E—- ] V2 lf’{



N-ﬂ&ob. "L jﬂﬂﬂ*l““—* ‘!’L— Pﬂié‘l'é Cé:”ijm'm é;r' a.laoi-ﬁ‘

2

r:n'\{- o2 %f* QF: Cﬂ//‘jug ot Eﬂ#of wru/ma_
<t rzg+fRf (S(<IF) (Sl <1y

Ce'"lc"h ‘“z Coaralmllu 94 )

lo Catan ,A_ Clussical Co /ﬁ:féh

g 2 M (IFERI HIRR |

Flud 4. extermum wrt Rz (L \_1:)



LWe. me

7o f‘““”*‘é\ +O( %)

TG

X+ 'S

Ma-l-c: {'?br c}ass‘f;wl ‘J’V&

X X

-l

! ¥—x! .(J',:-xa_

r—r—

AR ARIRA S &

Ko Kcag  x'e {'lay
jz 46.5""“?" 5;}_.’?@# QYau_

|



Nole :

L We QJSM_MJ/\— )
P J__? %m-wlcw;cmm

},1!

From His we Bl Hod b4 Colusion, oo
2 @ shucane pus Chowye o Hr Care packet
‘Ol.m_[o?j QH (@ssocidd Wit T vaviclie 1 dweedion

51 mdion | Sadisbres
Q=
JL b C) Cﬂiﬁqé‘kjlw‘“/)

G
; LA

T



m Qla.&‘..?{é.w( Wﬁﬂ'f are FCcoveed [ L

e or¥e
Q= S, L2507
Tln e Free moion
ft > jZ—Lu"[—

ik ot Ca“umm
)

- = + ;b
o+ 5 - atar
f

Ti/[ c:lwa Cael®

fuf: fﬂ + LJ'“E‘
C{)}u«LL.w or ot ‘Him— /5 a Coﬂmaq

Herce -4 Qﬂ/z: € ro0d 5

Z_F ot e Cfﬁ?ﬁ-ﬁ"cc@w 4 rgf

- {3 ﬁa;
The w:l%é Hhe e [P /é_"—J“ sz



7 KRG.CJ_(_'S.*) R}H:—_—-:;")
ﬂ‘l Ca-lbi o &
S T
j:" .f; @t b
1 . - j_; __f_,: Se U-;L: G_-l
f; I Y
— t . Toe 4 Ate:
..LP%L.,;L;,Q.C#&‘-‘—@“ A T ——{5 ... A
]a»’\" b "Cﬁ_mzx% Q.Qf(__“(, &
‘j}wd R -:%E
f + J‘C*E—'":) £ z
6~ = G | T2 & 1. T,
fta'

& _] :@—@
0, Y% & I3 “



D

Tl 4. Mmaﬂ Ao (6] apant B
"":L‘- Pﬂtﬂ;‘]‘h ‘J“ﬂ}.g_ Paw.{_

gr‘ Q"ae ﬂrmiﬂ& one hos

Ve ® j@[(ﬁ tod) fh [u#)*‘ji

Zﬁ(;}j; )&g L®

Gl

Supléa.ﬁa (o a v Jﬂmr_pr_—l— i é Fixre G;, +‘~/E—u

éLlZUI:st
4e 5 W

7,
j; e —E '11"2‘_:': .Pr?rf_nof Ll!ac%,_,:

o o

At
L2

_/;I-_E‘*‘-/_-, z -%—:—E 2 .j;:_. Lu*-é—-j?‘%(”‘é

AR
= " v gy v

¢ &



+
fm
A
MOQ
"LLFEM
-
A,
£
~‘:\Q
é a5
) %
| 2

£

£,

R =

S;#;
ra:’az
5{@
~TC*HYD¢
t ehe
Q:i- &
S
£
reed
de

A
O_...
&
A
—éE
A

f
b 2
O.-...

(o e %’X
;Wﬁu.ﬂl'
7]
f—ﬁ
0_;_;
< t
b
By
M«M
<
e
S5
5



103

?C’-ﬁ- H@Vﬁ/l& 7?&5&%@%&:5 > ‘DZ‘L_ 4‘1'-0‘& Aisle éfﬁﬁwj

b -
c F _ {
GME&{” () = d+ e . o ‘fi;-_ﬂ _ ot
&
&
£z £+eg

C‘(E")t - {
© E—-H +r L

gr.a.m&m‘-n_ (oe Llnt.w... S lﬂﬂ.»—l—'u_l._ Mﬁp”f‘"}a fi’*’furfa_

Ma.n.a -’?au.“-e_'ve.ws L = 51._,.. Y ¥

_ N
Hzﬁd—vj .—V: Z‘—U:-C"i

G - —

E*‘ﬁ;’"z’%_— 4L

(/()Q, Can .@x‘yuuﬁ "Hdt'i Jeq ?awwri béi'. Pa-!c-l{—iq.l
I?wi" H’"E éﬂ-'?zl{'?-'/‘ ‘]-n Sr. & éqn-fé Cg/]i.ﬂb‘ﬂ eKF“"i‘:‘-

whel St mﬁ_.g Jevms i V- Senes




Consider 4 S exbewer

C__)m ) ‘___ﬂ[____ﬁ_ﬁ—-— =z Gs+ @b—t{‘ Gy € C:D: G.:[/“‘G_Q-{....

J 4 £-—-H=:f"‘;‘£'
i
= G+ GG G- TRL
T2 Vo ey, e
T he-
GEY= Qo +Z 6oTTe 6ot 2 GaTE 6T,

(:‘-f-a'

VGG T Gl 4
{:tat‘
k-f-’a( 12:- FAE ﬂﬁaweﬁ

Le, s CalCMI“L‘"" (qﬁ/é.{cpa) @15’%(%?.

<ol emlyg> > CRlala> +Z <o Wi
L
CGlohy< % '(BD
¥ ;Zﬁ/éafud,[?;u‘? kGl LD T A7)

L 6o l6") LGS +- -



o <

LG G>= <l gal > SCE)

LE—'L us Consrdes a S A:/I -E‘gm‘f-n-.

4.
wmb’ﬂ— le.a-l«l-i.*l' i.(.;..J[_,”-} on aAXtSs La:"l"L ftu
7_{.:_ Sertes ¥
écf!"{'{n 60!607:@-&+&GT6}G=

Laak ﬂ,wl- Sertes J—L_,J.SJ”J;: LD:QLZ( 7;

ol Gl <A T W) hleal 47

b o] Gl bl I <R G LD <t T y
L"[C TG+



lo¥
ﬁ,ﬁ }uwp dish Scolevers , Flo mradeix elemeﬂla

CQH LH.. e,LfE-l 'M"‘*'L‘-‘{
(B R

([:[T/Z‘>=2Wq£i’/)
it
S R W lenp)
e R
Az_co N kﬁ'[ J-(MJIﬂdJ

oy 3:,,*‘ (i) J:? (h‘a):{
+ L ajgfr.,.axa}_'fh'a.\- K:{;fkw
€
S 1 e y
' £~ ) ’g o= %t kl

iz"’[_gm( ) =

%w DL /Qbav +Lu*e. (s ﬁ.‘fas:wlwe.

m/zwlqlo ta  Hear Jertes f faaa‘%rc 3 qfLe,.

q C:[m.mg' Seetferee g ﬁ?o,u/”__ql o, ,échﬁ-
o U v



/o?

(,UE' M ﬁﬂ(k:) 5'(‘1&'__ L‘u)
?”‘Hau-(%mbf W2 <RITR D] g DCK T |1 2
<l Go [

zjdk 4“:5&. (Rl Go > <l T > B Hlke)

Teid Tl b7l 6l >
Nes [ 47

—
L i ’15 a{ue_ c‘-n GV%L_(,J.

M:*-&'}- lm,aﬁv'aln-’(- wlu-m. ts
<l 6o T €T BT G TB 0D

i {f <SG (LD <RITI LS He) CLAT LD
£ Al Ce AT D) G\ T ke
Chl G 1>

-y

-7 NE
lq'f T’-'{..JZQ



>

Note oA ‘Z‘Au‘_{_ Seriesr (o dj) *.LA I%ﬁﬂ-;

SR CTOT 6 v eTeig e

IR
= (
(9‘;..{[ : -—q ol 9
[ = GoT6aT,
PRI Lo 1’\1_7[1 Eheyaa kaﬂfh_ﬁ_-(—wﬂ (‘*aa_lm:.
263{1— La-t.. ) y a,
= ___’é___ << X << @, a-

TLU‘ I%WELF -‘Iﬂ\'?,f"n. 5 Caqg b ﬂfbﬂ-i. “+ DA
OQ\(ﬂ—w;.S'

RR'RT AN,
(KR L
- (fee)

£TR \‘Lu *

Vre
2\* 2 0
?g'fé‘} = - ﬂ\ Z@ &J}(Hq)

f= oo Gl ya)
H ol



e =
Fy




e Byt (L) ;s U F .
P < ~

4

o
= - - Qg.J-.Mé;,( {.&ﬂu}w
C# L G'f!:rj( S}_-q_#e“_th

f&{_& 1V an Ex'a.mfa{-t, ﬂ Kaifﬂtvﬁo{i r\;rr:__g
@L{QHJ'U-M EsCape ra e fgf"ﬂ-m_(

=,

?zﬂa‘: 0 q.r 2_ ‘Z'AJ"C.S‘

n&‘%% 2— }’Hr.s: CBSL s CZ:IS“(Q‘..,{’

Elecage 1y Lo
He.e I’Aﬁzslﬂ wf“jﬂ%“mﬁ% 4;5'{7?5{::

S)Zaujer- afecca ‘. Q14 MA—O e_/m;_rgcj/} f-‘»"(ﬂ.{_
V!?D Constrcecdive fﬂ‘lﬂr&mg L U,



e

/Pblq-&'&"f'{ + UL TR MAPS, CLisscar <

R usa 0 Tum

“Baicre MaP ~ Classical

o
L.:—.
1)

o .
Yy bd“f{?x = z_'f?((!
— jl :11-1
L —_.dcd
g

ﬂi"'—eﬂ. —P’,-G_SE_,.J;.:; ra-p .P)i.ﬁcw;ih Ltauw“-e. E.?.

fn () = f -( NEFY

-, : X X\ 4 e
/B . xl 2 ~ o‘{g {X_ >~ };4 < |
j R‘:I 23--1 - C'-]

. (x,guﬁ_‘ (&,29) OCE 1-y) +

Pﬁp‘f‘ﬂ - ?zfa l:

. + j:-: [ &2y & CyX)



| Iy

Wﬂéﬂ}i q::lgj% fr:a)
&

‘b

WALL‘]; g&a j.,-—g (1_{‘11) + idgf(ﬁalj-—t

2 [M_l(é) » W, (?‘J]
’Dp_,cua-‘* fo % -

L(Ee, sstasces
Tolliesft Ruelle Fese




S Ul TUmM Brbes L
= R
. e e

NZ #4 Quankun shbs > éff:. = h- .

NG an l"‘-“"&—%)wﬂ. Fuke N even

l ?»;.7 120, Nt
1 Pa  ® HM}MML},?H‘
dul P 2 77 €

197 = Tl gl T

1 s z’lmm P

Lo el 47 HE2



7 HHe left “Side

?B
i
Lin Lgi 5’.,__1’{;{\_:'
A NB
7" ¢
- | AN
2 . < SN~
. e & &Nz~
M r<

repves eudatien
Wg .S’J-m,lrﬁ-lu“‘d—
Bnﬁ. L'-tj n,uoﬂ_f



%&lﬂﬁk"" Vam: SL@ ua""!"LL Somte c:[ e

J = b,
""L_..)L "-l-L,t'.l Can L e QVVQH&C-:R L'é-
(/Or‘uf-m,& _

. NoT cLERR
—;z)— ) Foy O ¢, 4% PRrRIor

B AT ThERS
(o Z__ O O o WAS 4 SoLuTe

.; N
FM/{ 5 a v X g Ma_‘l-?"fx g‘{-‘z‘ Qr“h.,

(Foure e R Reet)

DH{C/-# % < Cive ﬁrh#“’a ’almﬂs

5{ Vit lé}-*/a



B
(?g‘ﬁ) z F”/L 5 - LZDL
R EL/R

ﬂfs 41%»-;: o rm s LR TR

é"t‘l" 41 Mameﬂ-l.% VQ,FM@L‘I-(E-;,“T&? SL_}- LQ‘L
io SFQCE_ —'i"'“-e.‘ﬂ.) cori e

(e

E% O




CLusstent Ly 5
—a | |

A AP

¢ hwo e ap Wit ood
Pfﬂ F@»«}-[é& 7 Je‘g"—"'#nﬂu 'A'"f- Vv ol !
Oty Wt e



—
H y't i ' }’]-‘-f
H""’L

N n —i 4l 41 T
Up-rlz fo (UOERD Pluenz 't
/
. | —
| ‘
‘ VP4
e Zaums
! Py

OE //1. /@*’12 22D

ﬂp—sz« 2“54@5
(@{x!"): L “ ' * =
4;(2 +— X0 _;I_fi.(z :zzl(z‘.)-l,



& uawTUm MALTBAKER, @

T{,{)b SJ-EfJS C’an be Aone i Seve | q}aa_;)

’) Trausla Fe f{f(ﬂ—-;) 4o Site )

Translte LZJ/R (n+l]) o Site 4

1) /d'ﬂfag, b:z /L'E-P" ,pw!- kS 1, o=
”j 6""{ ol I':H} O --J
L})L ( ) » F;} () H)A C"‘
'ﬁq (n, +0 O f?/ w | | Golnet, &

Tocdex 1 In BS tean ol we pich Phese s

" F:}‘_—, eack sole & fe_{ﬂamM but Pwa

a|f th.’f fin E’Z. FA) M%.ﬁzm*_

(C]LWE..H n,

ﬂx. Ptbmge& 31}/&,%)9@0?{2/ & ;rmzi Jeu / » £

F(«E,r.; é; Lé Co.v"l hd.v’a— /D-E.Hﬂotf.('y ;’L{QIL'--P-EHD:QN.J
fntfl@@a'ﬁ‘{ff-- ?a‘g“



- fa——

(Fif-?)]}‘ - ¢ o 'f_%f (;J.‘f“-ﬁafﬂl’) gi-c.ﬂ?{n;l)
i W

W@ Can SUppes e 441.01»:_ are L S’iliLAS' +

Cacl, <. de }15,_’5 M- odutes o Ut He o2 1>

)Qrb\-f}.._ fgﬂl—bm Aa.: LN Cbmfa*?m‘{-.r*
ﬂr— Mu’wL-lﬁalur MG_F d:r.-nlf 2.0

ZSs M IPD>
M ¢ He Flog uet o perator
& Aiue Aeptnclernce oF any o perdos
Qo
(24 z(HV{lQ M
TE we look ok LFasion 1 He QmE

::I.Hcp 44.-.

(e @xpect |
O L)}lhzbf‘-m PJ&LE..S - bQ//C‘S‘"J'}C. mbqtfdﬂ

@ Y 2ot r"[tanzr — /eac.nlr.g,q_\_,ﬁ,q



LS
Tﬂ}d’/%? j) 6&54‘5‘}_ VRO = § fz"/f.

Pz:"'ﬁtab:c: 3+ RawDet Prpg S EL

Y Flgew STHTEs Aok £AN Dot Plisss,

————

MeEA SQUUrRE DisPLACEM EAVT I

T RAVSLAT 108 T VAR VT SPE7s ny,

L&'l' I be an opevader Lot JIVE-' .

!\m#lf..r& S’J;Fﬁe Jndex 11 a8 An EIthhlue_
Ly F= MTPMHV‘* .?z/e,)ms.tl_éo,am%ﬂ

774 -@IJE.ﬂVa.lhuqr é } are 1|
MSD =

<CAV\~‘-’H) : )E; < < ( i) -*_}"")1)_@

((M*%rM%-—*P)llﬂg

W%fﬂwée M MM M
oy ﬁ -
1‘{“’ (L pfE U

# {2~ )



M rM vy L
v - 5 o
dzn
(@r‘m)) Z (U’; d.__)
"&“J-:LG A c‘.;z:

f\,ﬁw _‘i’umm.ra_ {ed e F_asfe. f’Lwan?- b <,

J Laak “_4- @3_ ﬁuawa}g_ KE ;_Mp:;Ar"H CJIJ‘\L"Ié]

/

Ty

Jes © ML
(@mr))- Z <oy, 2, V% )

‘Z\"Z‘-G ﬁp_

<‘ 7 (//Z u*}w M M,LL)

- < (); U’—Z}-ZL> = C‘«E‘ ...-ZL

(Q—v‘rﬁ-ff)a “2{;(_’ 422 C’

G2,

E‘écjo.-\"'lz (é ?}(



f\]ﬂu? QP.M-L'& %ﬂ /Slﬂ?‘ltvbfﬁéé Mﬁ'_ﬁ. {Pé‘_j’e_r R e, "fq‘*-c./
¥ Uli”aﬂ:[ﬁ.i-(o;?n( inoriamc e , 24 Can Sheas

C, = “,:j"T*:['B”J* T

. r—
J oz -ﬂ‘%, O ou e —ns IL
M‘-‘-/'A* bﬂfcw

D - ﬂy{h |

-

!
sl Mﬂg)& Lo gumrALéj 3

,B {J>z ~ LLP&- }57

Cari > = 4*-»] Cou )
St ( J__)

OﬂL e Q.L/’n-l,(.wl* +L"” "’2‘ (P\MT

A &
I/I&metnnl(% on. UL



Te fud RmT palue For /JH_/

A~
YT <glTige Z(fgm: - z@;uw
~ g
[y 2 postica ket
£y
T S -
j— g e 4% [(wlé[?/
LA Py,
A de Ty T D gty
&z o 2

T'- = '3 - -8 ) - —
L d a,(‘ ) '?S’J

T RMUMT  He —E-rtg"aﬂf‘("l"’: N ‘{‘“M
et oo deed

Plsg) = ¢ SC-w) = < (a-Zgi0l)

% - + |
}(alulgx“>( s 4 LS + <877
($) =L clute unlm

g lex
. w Cle $¢ 0

7 M-i-?_ , M = —-E g
- =l CUE
<s % ¢t} 7 ’




(12
— e
<Pyl > - vk
Tbg;al- ([Jt}'h!t.> e x

i,

> Ix, "= 3= M *JZ g |+ 2 el

F e d
((:Iah[LDE ~N 81 L
(U ~) (W +8)
K- p T U (g-g)=
( . ;- CP@]'?- > - gdﬂa S;;g,_ e K [99:_.%)
R . MW =1)

W (Cﬁ‘-’ tﬁ_) -~ Corrdution Pastton 3 < XY fe>
Giwves in MLL-LL fr- CoE, Cus

ﬁ:%l - ‘A'C"é"‘f] .L.-l. ] Y,
% -& i W+l I_h#k * FYYED
L
(Cé-r‘m} > z )

f LreM -2
BT e sl

C!_gﬁng:{'ﬂ"i-‘
(:Dtiﬁpwu;& U—f Jo -é“” % N +‘(.E.n
&/[I:Lft—' / L@ N> MW



(o

@U{.MTL(M 4(2;4(3/45' . SMILgwWERY ﬁa775$
TR ARAA + (I4S PARD

E:Kc-.m !ﬂluﬂs

|

LOL }la-tff_. éwmﬂs and Ven Hees
on gaeh oo —]—l.uw. & Q gc,LEﬁo\
78 - e i o
d.x

Lk« iy

L{:’ﬂxl?— ﬁ(b]e, +11(:(;,J€



G
_’F"f? e ASSt

aw‘l < agfr*n,n.-!-mq & O!"‘l-ﬂl-q,'tL-‘L‘a'dH

@ac—L L:enc,o,, wca_affs—lfguhrz 71{_._ @,ﬂ-:eﬁiﬂ‘—(a&q
ookl b o

K ’ﬂ:: ¢
X . . o,
0'{.*,“ Q a-’ XA o f -
= A, kg A
%QCH."; ?’i//{i...()

GH‘J"‘:"[&: JQ Cor L e

(1% /ol = Cpﬁ_ ’C;r"" nﬂ é’ﬁﬁrd/.r -J’u
st A «-u-e:E(

AR gzé oo Al ooty 1L
Caod o1 V&L“j

50& Eac, /!‘-'-)z dtfrzp._~f-tu‘;.-t ﬂ 4;;& cthfo-i-{!-ﬂm't_li;' A
VE&"*"}‘E x b& @r‘r‘Lfﬁ ?‘

‘/)&}/ =—a .

WS’W% ; o



12%




JdY
dx -
Ix 5%&1&12‘ D Lo e x )
+§g‘ ML.{]
J¢
— »
“lyo o o g et
Jd¢
Jff = o [habdy f
o Smff,ﬁy [ J },,_,ne“

,D&ﬂw-: J-I‘.I'H.. éy_c. - k/é A\ " v
hCip

A [e# a-t_ug4% 2 0.

576{ F:«H}

This Jﬂmwia He Secule = o h's



me. Modals heve Mnhé Ja kw_,Lmé PF@E
(D Tlew-o @ exact +race Rrmula
TN DU é chlession! periodie sl
on ¥ grepl
(3) Thews « Aol rp0 cllomiza 10 ¥
[ree pandicla adton oo bonids aus
Aransctisa probul | Livs ab Ho veedicis !

@ ;Zz Classied version ha s gcm—? Vlf’hﬂrf:‘i‘arvL
Pmpw-l—aﬁs . |




