An explicit construction

of Parisi landscapes
in finite dimension



Disordered systems and landscapes

e Phenomenological description of glassy systems (glasses, pro-
teins, spin-glasses): rugged energy landscapes

e Long (Goldstein 1969), useful but somewhat misleading tra-
dition — coherence length scale implied
e Classification of random landscapes (lessons from Spin-Glasses)

— SK model and Parisi’'s full-RSB: complex, hierarchical land-
capes — valleys within valleys, ultrametricity

— REM and 1-step RSB: random (golf course) landscape on
the hypercube



Disordered systems and landscapes

e More generally: models of random fields (turbulence, fi-
nance)



Extreme value statistics

e Low temperature physics of disordered systems: statistics of
deep energies

e For M > 1 Gaussian variables, emax(M) = ov2In M [1 + o

e EXxtreme value distributions for IID
— Exponential variables: Gumbel — G(u) = exp[—u—exp[—u]]
— Bounded variables: Weibull — H(u) = pu*~ 1 exp[u#], u > 0

— Power-law variables: Fréchet — F'(u) = Mexp[_u—u]/u1+u



Extreme value statistics
e [ he Random Energy Model:

— M =2V, 6=+vN — emax ~ N and O(1) energy gap: non
trivial thermodynamics

— Gumbel statistics for low energy states equivalent to (1-
Step) RSB and localisation

e Applications: Decaying Burgers' Turbulence with random ini-
tial conditions: picks up extremes of the initial field

e FRG for pinned manifolds; Shocks, Cusps and RSB
. bare disorder evolves
with scales following a (functional) Burgers equation — shocks
are associated to metastable state formation



Random potential (finite dimension, short range)

e One particle in a short-range correlated Gaussian random
potential V(r) in N dimensions:

Vinax(R) ~ a\/In RN

e Not strong enough to compete with entropy: S ~ InRY —
always in the high temperature (delocalized) phase

e Diffusive motion at any T, in any N: D ~ exp(—c2/2NT?)

e But if the potential has exponential tails, Vmax ~ N In R:
true phase transition of the REM type at 1. = o + aging
dynamics below T, (see e.g ( )



Random potential (finite dimension, long range)

e One particle in a long-range correlated Gaussian random po-
tential V(r) in N dimensions:

(V(@)V () = N92|r—r'|2H, (H>0) — Vmax(R) ~ \/NgRH

e Always beats entropy S ~ In RN — always in the low temper-
ature (localized) phase

e Example: Exactly soluble Sinai (random force) model in N =
1 dimension — logarithmic diffusion and Golosov dynamic
localization ( )



Random potential (infinite dimension)

e One particle in a Gaussian random potential V(r) in N — oo
dimensions:
r — 1|2

Sl

(V(r)V (') = Ng?F|

e Short range: Vmax(R) ~ vVNgvV2InRY ~ Ngv/2In R can com-
pete with S ~ NInR at fixed R but N — oo — true phase
transition

e Exactly soluble model in the large N |imit using replicas

( )



Random potential (infinite dimensions)

e Short range (H < 0): 1 step RSB but T.(R) — 0 for large R
e Long range (H > 0): full RSB but T¢.(R) — oo for large R

e Special case, logarithmically growing F': 1-RSB with marginally
stable modes for all T' < T, = g (remains finite at large R)



Random potential (log case)

e A logarithmically correlated random potential in N dimen-
sions:

(V()V(E)) = N [fo—g*In(Jr — r'|* +a?)|

e Simple argument: Vmax ~ gv'N In RVIn RN ~ NgIn R matches

e Free energy given by a REM-like expression with a freez-
ing transition at 1. = g indep of N, using RG methods
( ) — matches exact results at N = oo

( )

e Low-energy states still have a Gumbel-like distribution (with
pre-exponential corrections)



Random potential (log case)

e Interesting dynamics: r2(t) ~ t2/% with a g dependent expo-
nent z = 24+2(g/7)?, and a dynamical transition at T, where
z becomes 4¢/T ( ) and aging sets in

e Building block of the Bacry-Muzy-Delour multifractal ran-
dom walk (finance):

dX (t) = o(t)dW (t) o(t) = ogexp[—BV ()] V Gaussian

(X1 = X)) = Mar© with =12 (39)2™" 2



A multiscale logarithmic potential

e Logarithmically correlated random potential with several scales:
V(r) =K Vi(r) with

1

(Vi) Vi (22)), = N Fy (50 = 12)2) L fiw) = —g?In (u+ B2

with increasing 0 < y; < 1 — separation of length-scales in
the R — oo limit

e In the continuum limit g2 In(r?24a2?) — fol o(1) g2 (V) In (7“2 4 RQV) dv,

INn a2

F@) =-inre ((17) @) =y [/ s)P0) dvt [ o2 @) v

e EXxact results for the free-energy F in the N — oo limit for
any & ( )



A multiscale logarithmic potential

For a discrete spectrum ¢2(v)p(v) = K | ¢?25(v — 1), the
model has exactly the GREM free energy in the limit R — oo.

For each temperature T, = >/ g7 the system freezes within
blobs of size R"r a la REM, with a Parisi x = T/T)

The system first freezes at 1. = 17 on the largest scale

T he last freezing transition takes place at Tiyyin = T On scale
RO

Each freezing transition is characterized by a participation
ratio Yo(R"») =1 — sz



A multiscale logarithmic potential

e In the continuum Ilimit: an explicit construction of Parisi
landscapes in finite Euclidean dimensions in terms of GTI
processes

e Multifractal Boltzmann measure
_ q T
n_k%@a Ve

leads to f(«) that are generically singular when f(ax) =0

e Multiscale dynamical freezing

(b)) = 2+ 2 (%)2

all levels such that T < T, age (concerning large length
scales), whereas small length scales, such that T > Ty, are
still stationary: temperature as a microscope



A multiscale logarithmic potential

e Generalized multifractal random walk with epoch dependent
multifractal spectrum (discrete)

) _ " (Q)Qnm—z)
oo T 2

e Generalized multifractal random walk (continuum limit)
n
Cn = 2mpBF(2mpB) + m[l — 2BF(23)] m = 5 (tr ~R)

and (n(p) with p=1—log7/log R and Tp = fpl o(1) g2 (v)dv



