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Disordered systems and landscapes

• Phenomenological description of glassy systems (glasses, pro-

teins, spin-glasses): rugged energy landscapes

• Long (Goldstein 1969), useful but somewhat misleading tra-

dition – coherence length scale implied

• Classification of random landscapes (lessons from Spin-Glasses)

– SK model and Parisi’s full-RSB: complex, hierarchical land-

capes – valleys within valleys, ultrametricity

– REM and 1-step RSB: random (golf course) landscape on

the hypercube



Disordered systems and landscapes

• More generally: models of random fields (turbulence, fi-

nance)



Extreme value statistics

• Low temperature physics of disordered systems: statistics of

deep energies

• For M � 1 Gaussian variables, εmax(M) = σ
√

2 lnM
[

1 + u
2 lnM

]

• Extreme value distributions for IID

– Exponential variables: Gumbel – G(u) = exp[−u−exp[−u]]

– Bounded variables: Weibull – H(u) = µuµ−1 exp[uµ], u > 0

– Power-law variables: Fréchet – F (u) = µ exp[−u−µ]/u1+µ



Extreme value statistics

• The Random Energy Model:

– M = 2N , σ =
√

N → εmax ∼ N and O(1) energy gap: non

trivial thermodynamics

– Gumbel statistics for low energy states equivalent to (1-

Step) RSB and localisation

• Applications: Decaying Burgers’ Turbulence with random ini-

tial conditions: picks up extremes of the initial field

• FRG for pinned manifolds; Shocks, Cusps and RSB [cf. Ba-

lents, JPB, Mézard; Le Doussal, Wiese]: bare disorder evolves

with scales following a (functional) Burgers equation – shocks

are associated to metastable state formation



Random potential (finite dimension, short range)

• One particle in a short-range correlated Gaussian random

potential V (r) in N dimensions:

Vmax(R) ∼ σ

√

lnRN

• Not strong enough to compete with entropy: S ∼ lnRN →
always in the high temperature (delocalized) phase

• Diffusive motion at any T , in any N : D ∼ exp(−σ2/2NT2)

• But if the potential has exponential tails, Vmax ∼ σN lnR:

true phase transition of the REM type at Tc = σ + aging

dynamics below Tc (see e.g ([Ben Arous-Cerny])



Random potential (finite dimension, long range)

• One particle in a long-range correlated Gaussian random po-

tential V (r) in N dimensions:

〈V (r)V (r′)〉 = Ng2|r−r
′|2H, (H > 0) → Vmax(R) ∼

√
NgRH

• Always beats entropy S ∼ lnRN → always in the low temper-

ature (localized) phase

• Example: Exactly soluble Sinai (random force) model in N =

1 dimension → logarithmic diffusion and Golosov dynamic

localization ([Fisher-Le Doussal-Monthus])



Random potential (infinite dimension)

• One particle in a Gaussian random potential V (r) in N → ∞
dimensions:

〈V (r)V (r′)〉 = Ng2F [
|r − r

′|2
2N

],

• Short range: Vmax(R) ∼
√

Ng
√

2 lnRN ∼ Ng
√

2 lnR can com-

pete with S ∼ N lnR at fixed R but N → ∞ → true phase

transition

• Exactly soluble model in the large N limit using replicas

([Mézard-Parisi, Fyodorov-Sommers])



Random potential (infinite dimensions)

• Short range (H < 0): 1 step RSB but Tc(R) → 0 for large R

• Long range (H > 0): full RSB but Tc(R) → ∞ for large R

• Special case, logarithmically growing F : 1-RSB with marginally

stable modes for all T < Tc = g (remains finite at large R)



Random potential (log case)

• A logarithmically correlated random potential in N dimen-

sions:

〈V (r)V (r′)〉 = N
[

f0 − g2 ln(|r − r
′|2 + a2)

]

• Simple argument: Vmax ∼ g
√

N lnR
√

lnRN ∼ Ng lnR matches

S at Tc = g

• Free energy given by a REM-like expression with a freez-

ing transition at Tc = g indep of N , using RG methods

([Carpentier-Le Doussal]) – matches exact results at N = ∞
([Fyodorov-Sommers])

• Low-energy states still have a Gumbel-like distribution (with

pre-exponential corrections)



Random potential (log case)

• Interesting dynamics: r2(t) ∼ t2/z with a g dependent expo-

nent z = 2+2(g/T )2, and a dynamical transition at Tc, where

z becomes 4g/T ([Castillo-Le Doussal]) and aging sets in

• Building block of the Bacry-Muzy-Delour multifractal ran-

dom walk (finance):

dX(t) = σ(t)dW (t) σ(t) = σ0 exp[−βV (t)] V Gaussian

〈(Xt − Xt+τ)
n〉 = Mnτζn with ζn =

n

2
− (βg)2

n(n − 2)

2
,



A multiscale logarithmic potential

• Logarithmically correlated random potential with several scales:

V (r) =
∑K

i=1 Vi(r) with

〈

Vi (r1) Vj (r2)
〉

V
= δi,jN Fi

(

1

2N
(r1 − r2)

2
)

, fi(u) = −g2
i ln (u + R2νi)

with increasing 0 ≤ νi ≤ 1 – separation of length-scales in

the R → ∞ limit

• In the continuum limit g2 ln(r2+a2) → ∫ 1
0 ρ(ν)g2(ν) ln

(

r2 + R2ν
)

dν,

F (x) = − lnRΦ

(

lnx

lnR

)

Φ(y) = y
∫ y

0
ρ(ν)g2(ν) dν+

∫ 1

y
νρ(ν)g2(ν) dν,

• Exact results for the free-energy F in the N → ∞ limit for

any Φ ([Fyodorov-JPB])



A multiscale logarithmic potential

• For a discrete spectrum g2(ν)ρ(ν) =
∑K

i=1 g2
i δ(ν − νi), the

model has exactly the GREM free energy in the limit R → ∞.

• For each temperature Tp =
∑K

i=p g2
i the system freezes within

blobs of size Rνp à la REM, with a Parisi x = T/Tp

• The system first freezes at Tc = T1 on the largest scale

• The last freezing transition takes place at Tmin = TK on scale

R0

• Each freezing transition is characterized by a participation

ratio Y2(R
νp) = 1 − T

Tp



A multiscale logarithmic potential

• In the continuum limit: an explicit construction of Parisi

landscapes in finite Euclidean dimensions in terms of GTI

processes

• Multifractal Boltzmann measure

Yq =
∫

V
p
q
β(r) dr ∼ V −τq

leads to f(α) that are generically singular when f(α±) = 0

• Multiscale dynamical freezing

z(`p) = 2 + 2

(

Tp

T

)2

,

all levels such that T < Tp age (concerning large length

scales), whereas small length scales, such that T > Tp, are

still stationary: temperature as a microscope



A multiscale logarithmic potential

• Generalized multifractal random walk with epoch dependent

multifractal spectrum (discrete)

ζ
(p)
n =

n

2
−

(

Tp

T

)2 n(n − 2)

2
.

• Generalized multifractal random walk (continuum limit)

ζn = 2mβF(2mβ) + m[1 − 2βF(2β)] m =
n

2
(τ ∼ R)

and ζn(p) with p = 1 − log τ/ logR and Tp =
∫ 1
p ρ(ν)g2(ν)dν


