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Phenomenological introduction to the physics of glasses
and to physical aging

What is a glass ?

Type of glasses

Structural glasses

Magnetic glasses

Colloids



Viscosity as a function of Tg/T
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* Tg Is the glass transition temperature
« At Tg the viscosity is about 1012 Pa s

* For T>Tg the Young modulus falls down of several orders of magnitude



Mechanical measurements

Deformed Polycarbonaie
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Fig. 3. Evolution of tan(d) = &G with temperatare for
successive heating runs for deformed polvcarbonate {applied
detformation close to 50%:, in compression at ambient temper-
ature). (@) first scan up to 339 K: () second scan up to 368 K
{(+) third scan up to 413 K (=) last scan up to 248 K, similar o
undeformed sample. Between two successive heating runs, the
sample 15 cooled at & K/min down to 1K K.



Dielectric measurements

o pure PC
& PC+EG heating scan
v PC+EG cooling scan
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FIG. 4. Dielectric loss vs temperature at 1.2 Hz for pure PC and
PC-EG systems during heating and cooling.
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Aging and Memory
effect in a polymer

Experimental set-up
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Aging of PMMA (Tg':. 388K)
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(a) Aging measured at f = 1Hz after a quench at various Tsiop.

(b) Aging measured after a quench at Ty, = 365K at various f.



Memory effect in PMMA
Evolution of € at f=0.1Hz as a functionof T
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Memory effect in PMMA
qulutionl of € at f=0.1Hz as afunctionof T
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Memory effect in spin glasses
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From:

V. Dupuis, E. Vincent, J.P. Bouchaud, J. Hammann, A.lto, H. Aruga Katori,

Aging, rejuvenation and memory effects in Ising and Heisenberg spin glasses,
Phys. Rev B 64 (17),174204,(2001). Also in cond-mat/0104399



Kovacs Effect
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What kind of models can be used ?

Important concept

Frustation

AF

Spin is frustrated!

Spin Frustration on the Kagomeé Lattice



Energy landscape
Bouchaud trap model
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Memory effects and trap model
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Fig. 6. Schematic picture of the hierarchical structure of the metastable states as a
function of temperature.



Aging in glassy materials

Aging has been often characterized by studing the response functions of the systems

Smart experimental procedures, based

either on multiple cycles of cooling, heating and waiting times

or on the modulation of the applied external fields

have shown the existence of spectacular effects of aging in glassy materials, such as

rejuvenation and memory.

These studies have been extremely useful to fix several important constraints for
the phenomenological models of aging.

Question: Is the analysis of fluctuations useful ?




1)
2)

3)

4)

9)

6)

7)

Outline

Phenomenological introduction to glasses
Aging, memory effects and history dependence

Thermal fluctuations and the Fluctuation Dissipation Relations
during aging.

The electrical thermal noise of two materials:
a) a polymer after a quench
b) acolloidal glass during the sol-gel transition.

Comparisons of the experimental results with those of other
experiments and of models of aging.

The mechanical noise.

Conclusions



FLUCTUACTION DISSIPATION THEOREM
In thermodynamic equilibrium

V and g are two conjugate variables

V(o) . .
R(w) = . IS the response function
60(w)
The thermal fluctuation spectrum S(w)= <| V(®)| 2> is
AKT
S(w) = Im{ R(w)}
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Fluctuation Dissipation Relation (FDR) ¢ gjiandolo Kurchan 1992.)
In a weakly out of equilibrium system

In a glass at T < T, the physical properties of the material depend on the
aging time t, after the temperature quench. Thus FDR takes the

following form: 4 Ko T.relw.t
S(w;tw)z & €ff( 7 w)

]m{qu(w, t”LU)}

FDR can be used to define an effective temperature of the system
S(w,tw) w
4 Kp Im{Ry (w,tw)}

Teff(wv t’w) —

Atequilibrium T p(w,tw) =T

In terms of correlation function FDR takes the form
—C(t,tw) + C(tw,tw) = Kp Teff(ta tw) R(t,tw)

where C(¢,ty) is the correlation function
and R(t,tw) the integrated response




KOB , BARRAT, Fluctuation dissipation ratio
In an aging Lennard-Jones glass, Europhys. Lett. 46, 637 (1999)
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Experimental study of fluctuations

Why is interesting to study fluctuations and FDR in experiments?
) The violation of FDT is model dependent.

1) Does it depend on the material ?

[11) What is the statistics of the signal?

V) Are fluctuations Gaussian or not ?

V) s the effective temperature independent on the observables ?

V1) What are the properties of the Brownian motion of a particle
Inside a non equilibrium bath ?
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Dielectric measurements

—d
electrodes :
? N material under study
Equivalent circuit of the sample
a
R T R; V
Vs ! amplifier ~>—
Vr c | VR
| — b

AB(n) = ¢ B 154L 1g isthe thermal noise voltage of R

The sample impedance IS: Z (tw,w) = k — L

(1+iw RC) iw(C' + iC")
The corresponding noise spectrum S; of Vz is:

Sz (tw, f) =4 Kp Tefp(w, tw) ReallZ(tw,w)]



Dielectric Measurement on polycarbonate
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Experimental set-up

Electrical features for noise measurements
Input voltage noise 5nV/ Hz'? for f > 2Hz
Input current noise 1fA [/ Hz!/?

Dielectric properties are measured by
a precise current amplifier.

Temperature stability 0.1 %
Max cooling rate -1K/s




Experimental procedure

a) The sample is heated at Ts=440K=1.05 Tg
and quenched at a temperature T.<Tg.

450

Typical temperature quench

Fast rate 1K/s
Slow rate 0.06 K/s

300 - : ,
10° 10° 10"
t (S)

b) The aging time t,, is defined as the time spentat T< Tg

c) At T,we measure FDR and the noise statistics.

d) This experimental procedure is repeated several times for the same T,



Measure at Tf=0.79T, Fast quench at 1K/s

- Sample is heated at T.=1.05
- Rapidly quenched (~2min) at T,=0.79 Tg.
- The aging time t, is defined as the time spent at T< Tg.

Noise spectra




Electrical response of the sample
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Effective temperature at T¢=0.79Ty

As a function of frequency at different t,

T T LI |

Teff(EtW) (K)

A good fit of T, 5y fOr t.ww > 200s is

I 1.1
fotty’ !

at tw < 2000, fo(tw) is not a simple power law of ¢y .

Teff(fatw):Tf [1 + (

Terr(f,tw) are self similar



Polycarbonate polarisation noise
Noise signals as a function of time at T¢=0.79T,

1500 s after the quench 75000 s after the quench
4 T T T T ; 4 T T T T T
3 3k
— 2 —_2
= =
= =
> 1 > 1
:11500 1 5|5O 1 GbO 1 6|5O 1 TIOO 1 750 1 SIOO 1 8|5O 1900 _10 5b 1 60 1 éO 2(50 250 360 350 400
t, (s) (t,-75000) (s)
10° — '
PDF of the signal t <1400s
t =3000s
~ —+— t. =6000s
wW
102l - —— tw=70000s |
(' ._."" ) !
1 0—4 B —:-:H H 1 -
e - _:,-T_-n:'?‘:w- b I| ]
""‘ M-I".r-::‘:': =] ‘:| 7_. El
et T ey
e ! L FREl ] 3 N =
10°° " lﬁr*ﬁﬁt . G E X
_4 —2 O 2 4
V (V)

When FDT is violated the fluctuations are not gaussian




PDF of the time T between two pulses
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For the trap model of aging
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K To
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where = T% and 7, is a characteristic time
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Measur
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T¢=0.98 T,

PDF after a slow quench
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Summary of the results

* Dielectric measurements in a polymer show a violation of the FDT.
* The effective temperature (after a very fast quench) is huge at small t,,

* The amplitude and the persistence time of the violation are decreasing
functions of frequency.

* The maximum frequency where the violation is observed scales as 1/t
* The strong violation is produced by a very intermittent dynamics.
* The statistics of the signal is highly non Gaussian

* The statistics of the time between two peaks is similar to the one assumed by the
trap model

* The intermittency depends on the quenching rate

Such a behavior is also observed in dielectric noise of a colloidal glass
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Other systems presenting Intermittency

Figurc 4. Time scrics of polarization. Two 50 s scorics showing random
telegraph switching (RTS) noisc. a, At 299 K, the rate of switching botweoon two
lovcls appears modulated. b, An cxample of a four state switching at 300K is

ssssss

polymer dielectric properties

using an AFM. \

E. Vidal Russel, N. E.
Israeloff, Nature 408, 695 \

b

(2000) O

Velocity fluctuations of a particle in a colloidal

gel present non Gaussian statistics and are

MErMITeNt\eeks et al. Phys.Rev.Lett.89,95704(2002)

Time Resolved Correlation in Diffusing Wave
Spectroscopy has shown a strong intermittency
In the slow relaxation dynamics of a colloidal gel
Cipelletti et al., J.of Phys.: Cond. Matt.




Interpretation of intermittency

* Huge T have been observed in numerical simulation of domain growth systems.
A. Barrat PRE 57 (1998) 3629

* Intermittency could be an indication of an activated process in a complex landascape
For example:
- Trap model predicts non trivial violation of FDT associated to an intermittent
dynamics.
- The system evolves in deeper and deeper valleys
- The dynamics is fundamentally intermittent because either nothing moves or there
IS a jJump between two traps.

* Heat exchange process between an aging system and the thermal bath may be
Intermittent. (A. Crisanti, F. Ritort, cond-mat/0307554)
Time statistics

* The dependence on the quenching rate is probably related to the fact that: “far from
equilibrium the system explores regions of the potential energy landscape distinct
from that explored in thermal equilibrium’
S. Mossa, F. Sciortino, cond-mat/0305526
E.M. Bertin, J.-P. Bouchaud, J.-M. Drouffe, C.Godreche cond-mat/0306089



Comparisons between different models.

Statistics of %

P(}<X)=1—A B+ X) 7

w

for the Sibani’'s model A =3 =1 and r = 2.3 independently of T%.

Experimental result at Ty = 0.797
10
 8~10"°, A~410%°and~y=1.4 °
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Time distributions
Experimental results:

® The PDF of the time between events is a power law:

W (T, tw) 7 (tw)

Trap model of ref. : J.P.Bouchaud, J.Phys.,2, 1705,(1992).

e The probability of finding % < X is compatible with

P(%<X)=1—A (84 X)7

@ [ he probability of finding small 7 decreases with ty,

Trap model of ref.. P. Sibani, J. Dell, Europhys. Lett. 64, 8, (2003)




Teff IN other experiments
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Conclusions

 Dielectric measurements show a non trivial violation of FDT during aging,
In two very different materials

* The origing of the huge violation is a strongly intermittent dynamics.
* The intermittency depends on the quenching rate

* The dependence on the observables of the fluctuations is unclear. It is not
the same for the two materials.

* High order statistics are certainly useful to understand the dynamics of
these systems.

* Several models show a qualitative agreement with these observations.

L. Buisson, S. Ciliberto, Physica D 204, 1 (2005).
L. Buisson, S. Ciliberto and A. Garcimartin, Europhysics Letters , Vol.63, 603 (2003).
L. Bellon and S. Ciliberto, Physica D 168, 325 (2002)



Brownian motion in a colloidal
glass out of equilibrium
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Laponite

Colloidal Suspension :

>
Fluid -> gel/colloidal glass "@

Fluid-Colloidal glass transition in a few hours

Debye length# 5 a 30 nm



Echantillons de ' ~~~m#*~—

Préparés sous atmosphére contrdolée N,
Om = 1.2 a 3 wt% dans l'eau 1
pH =10 — —
Force ionique : T de 104 a5 103 M

(\
Y/

Cell

:

<€— 1 mm glass slide

n !\
Gene frame 0.25 mm 0.17 mm cover slip

- . Objective
Immersion oil

|

Filtrée (0.45 um) pour briser les agrégats

Introduction de billes de verre
dispersées par ultrasons
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Optical set-up
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Objective 63x 20HM
N.A. 1.3

Nano-Max
Pizo-stage

A=633nm

LS white light source
DM dichroic mirror

M mirror

IRF infrared filter

IF  interference filter

P polarizer

A analyzer

QD quadrant photo diode




Measure of the T

Hp:
The global potential (colloid+laser) is harmonic

Equipartition holds out of equilibrium

Kg T
C; = KLaponite + K; and < A$2 >= g—z

K; isf the trap étﬁfiﬂ’ness

<Azr?><Az3>
Measure of the Kp Tepp = (K2 - Kl)(<Ax§1>—<A§§>)
fluctuations
for 2 intensities _ (K1<D22>—Ky<Az2>)

KLa,pon’ite _ (<Aa;%>—<Aa:%>)



Position signals
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Brownien particle:
Glass sphere
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Constant power measurement
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Experimental Results
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Spectra as a function of time
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Kramers-Kronig R
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Teff (K)
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Deérive aux temps longs
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Multiple traps

A=633nm

LS

IRF
IF

QD

white light source
dichroic mirror

mirror

infrared filter
interference filter
polarizer

analyzer

quadrant photo diode

Nano-Max
Pizo-stage
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Condenser

A

Objective 63x 20HM
N.A. 1.3

Camera rapide

A=980nm




Collective motion
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Influence des parametres
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Conclusions

* The effective temperature Is equal to that of the
bath

e Large fluctuations of the variance appear near the
solidification time.

e There is a collective slow motion at very large
scale



Measurements of fluctuations during de sol-gel
transition in a colloidal glass

For a gel the physical properties change as a function of the time after the preparation.
We measure the electric properties of Laponite
(synthetic clay consisting of discoid charged particles).

Laponite is well characterized by means of light scattering experiments.
Its behavior turns out to be very close to that of a glass.

Preparation
-The Laponite solution is prepared in a clean N, atmosphere
-Laponite particles are dissolved at a concentration C in pure water under stirring

- The solution is then filtered.

The speed of the sol-gel transition is controlled
by the concenteration C

C has been varied between 2.5% and 3% mass fraction



Aging of Laponite

Dynamic light Scattering

Experiment
(Density Fluctuations)
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Experimental set up

Golden coated Plexiglass
clectrodes » cell
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The cell

Laponite sample

Equivalent electrical circuit
of the cell, of impedance:
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Btlk 27 | Cq

Resistance

Debye Layers

Forf>>2ﬂkcd = Zc™~ R

and the noise spectrum at equilibrium

S(f) =4a4K5 1T R




Electrical response function of Laponite at C=2.5%

Real and Imaginary part of Z (k)

100

6Ot - i

40t -

Re(Z) for t
Im(Z) for t
Im(Z) for t

T
e N
=gl
-

10"

Real and
(maginary part
of Zc versus
frequency at

two different tyy

L,

Time evolution of the bulk

resistance




Noise spectrum of Laponite at 2.5%
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Effective temperature of Laponite
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Large violation of the fluctuation dissipation relation
for electrical properties of Laponite

Solution test : NaOH at 10~3 mol.l"!
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Frequency (Hz)

No violation is observed in this case




Effective temperature (K)
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Signal of Laponite at C=2.5%

Signal as function of time
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When FDT is violated the fluctuations are not Gaussian

Buisson, Bellon, Ciliberto, J. of Phys.: Cond Mat. 2003
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Signal of Laponite
at C=3.5%

Intermittency increases
with concentration,
which is equivalent

to the quench rate
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