

Dynamical heterogeneity at the jamming transition of a colloidal suspension

Luca Cipelletti^{1,2}, Pierre Ballesta^{1,3}, Agnès Duri^{1,4}

¹LCVN Université Montpellier 2 and CNRS, France ²Institut Universitaire de France ³SUPA, University of Edinburgh ⁴Desy, Hamburg

Soft glassy materials

Confocal microscopy image by Eric Weeks

Van Megen et al. PRE 98

Soft glassy materials

Outline

- What are dynamical heterogeneities ?
- Why should we care about DH ?
- How can we measure DH ?
- **DH** (very) close to jamming

Dynamical Heterogeneity

PDF of particle displacements in a dense colloidal suspension

Kegel et al. Science 00

Dynamical Heterogeneity

String-like motion in a LJ supercooled fluid

t = 0 t = t

Donati et al. PRL 98

Dynamical Heterogeneity

Relaxation time in a colloidal suspension near close packing

Why are DHs important?

Crucial role in the slowing down of the dynamics close to the glass transition

- Adam-Gibbs: relaxation through **cooperatively rearranging regions.** Their size **increases** approaching the glass transition.
- Glass transition as a (dynamical) **critical phenomenon** ?
- DHs may allow one to **discriminate between competing theories**

Size of DH: simulations

What quantities should we measure?

Space and time-resolved correlation functions $f(t,t+\tau,\mathbf{r})$ or particle displacement

- **Simulations** (far from $T_g!$)
- (Confocal) microscopy on colloidal systems
- Granular systems (2D, athermal, see Dauchot's talk)

Confocal microscopy on colloidal HS

From E. Weeks web page

Confocal microscopy on colloidal HS

Weeks et al. Science 00

What quantities should we measure?

Space- and time-resolved correlation functions $f(t,t+\tau,\mathbf{r})$ or particle displacement

• **Simulations** (far from $T_g!$)

• (Confocal) **microscopy** on colloidal systems (limited statistics, stringent requirements on particles (size, optical mismatch...))

• Granular systems (2D, athermal, see

Dauchot's talk)

Time-resolved correlation functions $f(t,t+\tau)$ (no space resolution)

Temporally heterogeneous dynamics

homogeneous

Temporally heterogeneous dynamics

homogeneous

heterogeneous

Temporally heterogeneous dynamics

homogeneous

heterogeneous

Dynamical susceptibility in glassy systems

Supercooled liquid (Lennard-Jones)

$$\chi_4 = N \operatorname{var}[\mathbf{Q}(\mathbf{t})]$$

Dynamical susceptibility in glassy systems

 $N_{\rm blob}$ regions

$$\chi_4 = N \operatorname{var}[Q(t)] \sim N (1/N_{blob}) = N/N_{blob}$$

$$\chi_4(\tau) \sim \left\langle \int d^3 \mathbf{r} f(0,t',t'+t) f(\mathbf{r},t',t'+t) \right\rangle_{t'}$$

How can we measure χ_4 ?

Time-resolved light scattering experiments (TRC)

Experimental setup

CCD-based (multispeckle) **Diffusing Wave Spectroscopy**

Random walk w/ step l^*

Change in speckle field mirrors change in sample configuration

Time Resolved Correlation

degree of correlation
$$c_I(t_w, \tau) = \frac{\langle I_p(t_w) | I_p(t_w + \tau) \rangle_p}{\langle I_p(t_w) \rangle_p \langle I_p(t_w + \tau) \rangle_p} - 1$$

degree of correlation
$$c_I(t_w, \tau) = \frac{\langle I_p(t_w) | I_p(t_w + \tau) \rangle_p}{\langle I_p(t_w) \rangle_p \langle I_p(t_w + \tau) \rangle_p} - 1$$

Average over t_w

intensity correlation function $g_2(\tau) - 1$

Experimental system

PVC xenospheres in DOP

- radius $R \sim 10 \,\mu\text{m}$
- Polydisperse
- Brownian
- Excluded volume interactions

•
$$\varphi = 64\% - 75\%$$
 (Note: $\varphi_g \sim 58\%$)

« Diluted » samples

Brownian behavior

« Diluted » samples

2-time intensity correlation function

 $\phi = 66.4\%$

Fit: $g_2(t_w, t_w + \tau) - 1 = a \exp[-(\tau/\tau_0)^{\beta}]$

- Initial regime: « simple aging » ($\tau_s \sim t_w^{-1.1 \pm 0.1}$)
- Crossover to stationary dynamics, large fluctuations of τ_s

Average dynamics

Relaxation time
$$\overline{\tau}_0 \sim \frac{1}{|\varphi - \varphi_c|^{1.01 \pm 0.04}}$$

 $\phi_{c} = 0.752$

Average dynamics

Stretching exponent $\overline{\beta}$

Fluctuations of the dynamics: χ

$$\chi(\tau) \equiv \chi(\tau,\varphi) = \overline{\left(c_I(t,\tau) - \overline{c_I(t,\tau)}\right)^2} / \overline{a}^2$$

Fluctuations of the dynamics: $\chi * vs \phi$

Measurement time issue?

Measurement time issue?

Not a measurement time issue !

Proposed physical mechanism

Competition between :

Smaller displacement associated

with each rearrangement event (tigther packing)

More events required to relax system

Inspired by Durian, Weitz & Pine (Science, 1991)

$$g_2(\tau) - 1 = g_1^2(\tau) = \left[\sum_s g_1^{(s)}(\tau)\right]^2$$

Inspired by Durian, Weitz & Pine (Science, 1991)

Inspired by Durian, Weitz & Pine (Science, 1991)

1 event ~ Δr^2

Inspired by Durian, Weitz & Pine (Science, 1991)

p = 2 « **ballistic** » rearrangements

Simulations

- Photon paths as random walks on a 3D cubic lattice
- Lattice parameter = l^* , match cell dimensions
- Random rearrangement events of size ξ^3

• Calculate
$$c_I(t,\tau) = \left[\sum_s g_1^{(s)}(t,\tau)\right]^2$$
 with

$$g_1^{(s)}(t,\tau) = \exp[-n_s(t,\tau)^p \sigma_\phi^2]$$

Parameters : • p (use one single p for all φ) • ζ^3 • σ^2_{ϕ} (we expect σ^2_{ϕ} as $\varphi \longrightarrow \varphi_c$)

Simulations *vs.* **experiments**

experiments

Simulation parameters

- *p* = 1.65 supradiffusive motion
- ξ^3 grows continuously with φ
 - very large!!

Conclusions

Dynamics heterogeneous

Non-monotonic behavior of χ^*

Conclusions

Conclusions

Dynamical heterogeneity dictated by the **number of rearrangements** needed to relax the system

Thanks to...

V. TrappeD. WeitzL. BerthierG. BiroliM. Cloître

CNES Softcomp ACI IUF