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Soft glassy materials

Confocal microscopy image  by Eric Weeks
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Soft glassy materials



Outline

• What are dynamical heterogeneities ?

• Why should we care about DH ?

• How can we measure DH ?

• DH (very) close to jamming



Dynamical Heterogeneity

Kasper et al. Langmuir 98

PDF of particle

displacements in a dense 

colloidal suspension

Optical microscopy

Kegel et al. Science 00

Confocal microscopy



Dynamical Heterogeneity

Donati et al. PRL 98

String-like motion in a LJ

supercooled fluid 



Dynamical Heterogeneity
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Why are DHs important?

• Adam-Gibbs: relaxation through cooperatively rearranging regions. 

Their size increases approaching the glass transition.

• Glass transition as a (dynamical) critical phenomenon ? 

• DHs may allow one to discriminate between competing theories

Crucial role in the slowing down of the

dynamics close to the glass transition



Size of DH: simulations

Berthier PRE 04

Less mobile particles in a LJ

supercooled fluid (Tc ~ 0.435)

T = 2 T = 0.6

T = 0.45



What quantities should we measure?

Space and time-resolved correlation functions f(t,t+τ,r) or 

particle displacement

• Simulations (far from Tg!)

• (Confocal) microscopy on colloidal systems

• Granular systems (2D, athermal, see Dauchot’s talk)



Confocal microscopy on colloidal HS

From E. Weeks web page



Confocal microscopy on colloidal HS
Weeks et al. Science 00

?

Weeks et al.,

J. Phys. Cond.

Mat 07



What quantities should we measure?

Space- and time-resolved correlation functions f(t,t+τ,r) or 

particle displacement

• Simulations (far from Tg!)

• (Confocal) microscopy on colloidal systems

(limited statistics, stringent requirements on 

particles (size, optical mismatch…))

• Granular systems (2D, athermal, see

Dauchot’s talk)

Time-resolved correlation functions f(t,t+τ)  (no space resolution)



Temporally heterogeneous dynamics
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Temporally heterogeneous dynamics
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Temporally heterogeneous dynamics
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Dynamical susceptibility in glassy systems

Supercooled liquid (Lennard-Jones)

Lacevic et al., PRE 2002

χ4 = N var[Q(t)]

<
Q

(t
)>



Dynamical susceptibility in glassy systems

χ4 = N var[Q(t)] ~ N (1/Nblob) = N/Nblob

Nblob regions

χ4 (τ) ~  ( ) ( )
'

3 ',',',',0
t

tttftttfd ++∫ rr



How can we measure χχχχ4?

Time-resolved light scattering experiments (TRC)



Experimental setup

CCD-based (multispeckle)

Diffusing Wave Spectroscopy

CCD

Camera

L
as

er
 b

ea
m

Change in speckle field mirrors

change in sample configuration

Random walk w/ step l*



Time Resolved Correlation

time tw
lag τ

degree of correlation cI(tw,τ)  =                                - 1
< Ip(tw) Ip(tw +τ)>p

< Ip(tw)>p<Ip(tw +τ)>p



Time Resolved Correlation
degree of correlation cI(tw,τ)  =                                - 1

< Ip(tw) Ip(tw +τ)>p

< Ip(tw)>p<Ip(tw +τ)>p

intensity correlation

function  g2(ττττ) ) ) ) −−−− 1

Average over tw

Average 

dynamics
g2(ττττ) ) ) ) −−−− 1

10
-2

10
-1

1

0.0

0.1

0.2

g
2
(τ

)-
1

τ  (sec)



Time Resolved Correlation
degree of correlation cI(tw,τ)  =                                - 1

< Ip(tw) Ip(tw +τ)>p

< Ip(tw)>p<Ip(tw +τ)>p

fixed τ, vs. tw

fluctuations of the dynamics

var(cI)(ττττ)

intensity correlation

function  g2(ττττ) ) ) ) −−−− 1

Average over tw

Average 

dynamics
g2(ττττ) ) ) ) −−−− 1 ‘dynamical 
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Experimental system

PVC xenospheres in DOP

• radius R ~ 10 µm

• Polydisperse

• Brownian

• Excluded volume interactions

• ϕ = 64% – 75% ( Note: ϕg ~58%)



« Diluted » samples
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« Diluted » samples

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

 ϕ = 28%

 ϕ = 46%

 

 

<
∆

r2
(τ

)>
 (

m
2
)

τ (sec)

1

R/100 !!

DWS probes dynamics on a length scale

λλλλl*/L ~ 10 – 35 nm  << R



2-time intensity correlation function

• Initial regime: « simple aging » (τs ~ tw
1.1 ± 0.1)

• Crossover to stationary dynamics, large fluctuations of ττττs
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Average dynamics

Relaxation time τ0 ~ 
04.001.1

1
±

− cϕϕ

ϕϕϕϕc = 0.752



Average dynamics

Stretching exponent ββββ



Fluctuations of the dynamics: χχχχ

ϕϕϕϕ = 0.738



Fluctuations of the dynamics: χ∗ χ∗ χ∗ χ∗ vs ϕϕϕϕ

χ∗χ∗χ∗χ∗
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Measurement time issue?

Merolle et al., PNAS 2005



Measurement time issue?

tseg tseg tseg tseg tseg
tseg

cI(t,τ)

Does χ*(tseg,ϕ)  depend on tseg  ?



Not a measurement time issue !
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Proposed physical mechanism

Competition between :

Growth of ξξξξ on approaching  ϕg

Smaller displacement associated 

with each rearrangement event 

(tigther packing)

Nblob χ*

More events         χ*

required to

relax system



DWS and intermittent dynamics
Inspired by Durian, Weitz & Pine (Science, 1991)



Light is decorrelated

DWS and intermittent dynamics
Inspired by Durian, Weitz & Pine (Science, 1991)

ξ



Light is decorrelated

DWS and intermittent dynamics
Inspired by Durian, Weitz & Pine (Science, 1991)

Number of events between

t and t +τ 
Mean squared change of phase for

1 event ~ ∆r2

ξ



Light is decorrelated

DWS and intermittent dynamics
Inspired by Durian, Weitz & Pine (Science, 1991)

p = 1        « brownian » rearrangements

p = 2 « ballistic » rearrangements

ξ



Simulations

ξ

• Photon paths as random walks on a 3D cubic lattice

• Lattice parameter = l*, match cell dimensions

• Random rearrangement events of size ξ3

• Calculate with

Parameters :

• p (use one single p for all ϕ)

� ξξξξ3

• σσσσ2
φφφφ (we expect σ2

φ as ϕ         ϕc )

[ ]2)(

1 ),(),( ∑=
s

s

I tgtc ττ



Simulations vs. experiments

simulations

experiments



Simulation parameters

p = 1.65 supradiffusive motion

ξξξξ3 - grows continuously with ϕϕϕϕ

- very large!!



Conclusions

Dynamics heterogeneous

Non-monotonic behavior of χ*



Conclusions

Dynamics heterogeneous

Non-monotonic behavior of χ*

Competition between

- increasing size of dynamically 

correlated regions 



Conclusions

Dynamics heterogeneous

Non-monotonic behavior of χ*

Competition between

- increasing size of dynamically 

correlated regions 

- decreasing effectiveness of

rearrangements

Dynamical heterogeneity dictated by the number of rearrangements

needed to relax the system
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