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Introduction

Dissipative stationary states ubiquitous in physics :
turbulent stationary flows
vibrated granular materials
Any system with a “markovian coarse graining”.

Always structured according to the following scheme :

No detailed balance, no t → −t invariance
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External forcing fluctuations are of interest for the
physicist:

Not impossible to measure experimentally
(Labbe,Pinton,Fauve 1996):

Input for models of turbulence (large-scale forcing)
Related to the dissipated power, i.e. to the entropy
production.
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Is it possible to understand the fluctuation properties of
the injected power in a dissipative NESS ? Do exist
common features ?
What is the relation between this coarse-grained
approach and the exact microscopic relation, the
so-called Fluctuation Theorem ?
We consider in this talk a (family of) toy-model of
dissipative system, driven in a non-trivial stationary
state, and perform exact computations related to the
injection properties.
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A model of dissipative spins

The zero-T Glauber dynamics is :
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The spin variables are sj = ±1 for j = −N,N − 1.
System more easily described by the domain wall
variables:

nj = (1− sjsj+1)/2

(also the energy density)
supresses the trivial symmetry (∀j sj → −sj).
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Stationary state characterized by a mean energy
profile:

〈ni〉 ∼ (π|i |)−1

And an average injected power

〈ε〉 = 2λ[Prob(s0 = s1)− Prob(s0 = −s1)]

= 2λ〈s0s1〉 = 2λ[λ+ 1−
√
λ2 + 2λ]



1D dissipative

Farago &
Pitard

Introduction

The model

The ldf

Computing f

The large
deviations

Model with
drift

Conclusion

Beyond the mean values

The instantaneous injected power ε(t) has a singular
pdf : P(ε) = Aδ(ε) + Preg(ε).
Consider rather

Π =

∫ τ

0
duε(u)

What is the distribution of Π/τ for large τ ?
Large deviation theorem states that

Prob(Π/τ = ε) ∝
large τ

exp
(
τ f (ε)

)
f (ε) is called the large deviation function (ldf)
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Properties of the ldf

The ldf characterizes the fluctuations beyond the
central limit theorem (restricted to f ′(〈ε〉) and f ′′(〈ε〉)).
General properties: f (ε) 6 0, concave, f (〈ε〉) = 0.
Time-averaging ' low-band filtering, close to
experimental measurements.
But an involved object: the knowledge of the full
dynamics is required to compute f (ε).
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The ldf for the spin model

f (ε) is given by the inverse Legendre transform of

g(α) =
2
π

∫ ∞

0
du log

(
1 +

λ2(e2α − 1)(ψu + e2α)

(ψu + 1)2(λ2/4 + u2)

)
ψu = |2iu + 1 + 2

√
−u2 + iu|2

that is

f (ε) = min
α

(g(α)− αε)
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How to get f ?

The dynamics of the system is given by a master
equation

∂tP(C) =
N−1∑

j=−N

[w(Cj → C)P(Cj)− w(C → Cj)P(C)]

C = (s−N = ±1, s−N+1, . . . , sN−1)

= (n−N = 0 or 1, . . . ,nN−1)

Cj = C except sCj
j = −sCj

The stochastic operator is a 22N × 22N (sparse) matrix.
Its elements are :

w(C → C0) = λ (Poisson)
w(C → Cj) = nj + nj−1 for j 6= 0 (Glauber)
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The master equation is useless to compute pdf of
time-extended quantities like Π =

∫ τ
0 duε(u). . .

We have to enlarge the description to include the
temporal dimension of Π :

P(C,Π, t) is the probability that the system has the
configuration C at t and has received an energy Π from
the injection in the interval [0, t ]
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P(C,Π, t) obeys a modified master equation (all nj refer
to state C and n̂j = 1− nj ):

∂tP(C, Π) = λT0 +
X
j 6=0

Tj

T0 = P(C0, Π − 2)n−1n0 + P(C0, Π + 2)n̂−1n̂0

+ P(C0, Π)[n−1n̂0 + n̂−1n0] − P(C, Π)

Tj = P(Cj , Π)(n̂j + n̂j−1) − P(C, Π)(nj + nj−1)

Usual trick: consider the Laplace transform wrt Π :

F (C) =
∑
Π

P(C,Π)eαΠ
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The evolution equation for F is

∂tF (C) = λU0 +
X
j 6=0

Uj

U0 = F (C0)e2αn−1n0 + F (C0)e−2αn̂−1n̂0

+ F (C0)[n−1n̂0 + n̂−1n0] − F (C)

Uj = F (Cj)(n̂j + n̂j−1) − F (C)(nj + nj−1)

Typically, F (C, t) is a sum of exponential
(diagonalization of the master operator), whence

F (C, t) ∝
large t

exp[g(α)t ]

where g(α) is the largest eigenvalue of λU0 +
∑

Uj .
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The Laplace transform of Prob(Π) is given by

〈eαΠ〉 =
∑
C

F (C) ∝
large t

exp[g(α)t ]

The inverse Laplace transform yields the cited result:

Prob(Π = tε) ∝ 1
2iπ

∫ 0+i∞

0−i∞
dα exp(t [αε+ g(α)])

∼ exp (t . minα[αε+ g(α)])

(It is a min : maximum principle of complex analysis :
no inner maximum)
So, what is the largest eigenvalue of U0 +

∑
Uj ?
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Fermionic diagonalization

The answer is almost equivalent to the diagonalization
of the operator. . . it is by chance feasible.
We consider an abstract state space of dimension 24N ,
tensorial product of the individual domain walls state
spaces. A basis is the collection of vectors

|n−N , . . . ,nN−1〉 = |C〉

Consider the vector |φ〉 =
∑
C

F (C)|C〉

Its time evolution is given by

∂t |φ〉 = H|φ〉
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H is given by

H = λ[e2ασ−0 σ−−1 + e−2ασ+
0 σ+

−1 + σ+
0 σ−−1 + σ−0 σ+

−1 − 1]

+
X
j 6=0

[2σ+
j−1σ

+
j + σ+

j−1σ
+
j + σ+

j−1σ
+
j − σ+

j−1σ
+
j − σ+

j−1σ
+
j ]

where, acting on the j-th domain wall state space,

σ+
j =

(
0 1
0 0

)
, σ−j =

(
0 0
1 0

)
Example :

σ−0 σ−1|φ〉 =
X
C

F (C)σ0σ−1|C〉

=
X
C

F (C)n̂0n̂−1|C0〉

=
X
C

F (C0)n0n−1|C〉
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the Wigner-Jordan transformation

Fermionization:

c−N = σ+
−N

c+
−N = σ−−N

cj = σ+
j σ

z
−Nσ

z
−N+1 . . . σ

z
j−1

c+
j = σ−j σ

z
−Nσ

z
−N+1 . . . σ

z
j−1

where σz =

(
1 0
0 −1

)
, are truly fermionic operator,

i.e.

{ci , cj} = 0
{c+

i , c
+
j } = 0

{c+
i , cj} = δi,j
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Expressed in terms of the c, c+, the operator H is
quadratic :

H =
∑
n,m

[
c+

n Anmcm +
1
2

c+
n Bnmc+

m +
1
2

cnDnmcm

]
− λ

One shows that H is diagonalizable, i.e. a linear
fermionic transformation gives

H =
∑

q

Λq

(
ξ+q ξq −

1
2

)
+

1
2

Tr(A)− λ

whence we deduce the eigenvalues of H
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The eigenvalues of H are of the form

1
2

∑
q

εqΛq +
1
2

Tr(A)− λ

with εq = ±1 and Λq the positive eigenvalues of

M =

(
A B
D −A

)
As a result, we get that

g(α) =
1

4iπ

∮
dµ µ

χ′M(µ)

χM(µ)
+

1
2

Tr(A)− λ

=
2
π

∫ ∞

0
du log

(
1 +

λ2(e2α − 1)(ψu + e2α)

(ψu + 1)2(λ2/4 + u2)

)
(contour enclosing the positive eigenvalues only)
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The large deviations

Typical shape of the large deviation functions (rescaled
wrt the mean):

No negative branch !
A curvature strongly dependent on λ
A noticeable positive skewness.
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When rescaled wrt the mean and curvature:

Skewness not negligible, weak but complicated
dependence wrt λ.
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The curvature as a function of λ:

→ almost proportional to 〈ε〉:

Why ?
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The pure Poissonian model

Consider an injection of pairs of domain walls without
negative injection and rate ρ.
The “injected energy” during τ is simply twice the
number n of pairs of dw emitted → Poissonian
statistics:

P(n) = e−ρτ (ρτ)n

n!

for which one has all the cumulants equal to ρτ and

f (ε = 2n/τ) =
ε

2
[1− log(ε/2ρ)]− ρ

= −ρ
2
(1− ε/2ρ)2 +

ρ

3!
(1− ε/2ρ)3 + . . .

→ curvature/mean=0.5 here whatever the rate. But we
have rather 0.8 except for λ→ 0. . .
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A way to improve the model is to assume that in
average, ndw (λ) are emitted, not necessarily 2
In that case: curvature/mean=1/ndw . Thus, ndw ∼ 1.25.
But this model cannot account for the skewness χ,
defined by

χ = 〈〈ε3〉〉〈〈ε〉〉/〈〈ε2〉〉2

f (ε) = −σ
2

(ε/〈ε〉 − 1)2 +
σχ

3!
(ε/〈ε〉 − 1)3 + . . .

The PPP states χ = 1 whatever ndw whereas we have
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Pure Poissonian discrete model

A slight modification : the emission of ndw domain walls
is discrete, with a probability ρ∆t in a time interval ∆t
(remanence).
In that case,

f (ε) = − 1
∆t

"
(1 − ε∆t

ndw
) log

1 − ε∆t
ndw

1 − ρ∆t
+ (

ε∆t
ndw

) log
ε∆t/ndw

ρ∆t

#

= −1
2

(
ε

ndwρ
− 1)2 ρ

1 − ρ∆t
+

1
3!

(
ε

ndwρ
− 1)3 (1 − 2ρ∆t)ρ

(1 − ρ∆t)2 + . . .

We get χ = (1− 2ρ∆t)/(1− ρ∆t). This is < 1.
Conclusion : The domain walls cannot be emitted too
closely from each other.
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Note: we can extract ∆t(λ) from σ and χ :

→ not too bad. Defines the time a dw needs to be
effectively “absorbed” in the system. Related to the dw
population near the boundary.
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Adding a drift

The model can be generalized in the following way:
domain walls move toward the boundary with rate
2p < 2, away from it with rate 2q = 2(1− p). Notice
0 < p < 1
In that case the Legendre transform of the ldf is

The model has now two parameters : λ and p
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Physical observables

The mean injected power:

Obviously, the injected power increases with 1− p.
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The scaled curvature σ/〈ε〉:

Note a region > 1 near p = 0: slightly paradoxical: ndw < 1 !
Actually, everything is normalized by the average 〈ε〉 : ndw
measures the decorrelation of the two injections in the two
halves of the system.
For p = 0 and λ = ∞, the two injections are perfectly
decorrelated, thus the effective Poisson process emits only
one dw.
Still paradoxical : p > 1/2 shouldn’t have ndw = 2. . .
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The skewness has a complicated behaviour :

→ Still unclear. . .
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Conclusion:

Simple model of energy injection in dissipative systems.
Quite rich behaviours of the three first cumulants of the
distribution.
Interpretation in terms of effective Poisson processes.
Can this kind of models be helpful for experiments
where dissipative structures are generated near a
moving boundary and migrates into the bulk ?
Perspectives: adding T , just one half of the system,
inhomogeneous drift, etc. . .
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