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Introduction @ Dissipative stationary states ubiquitous in physics :
The model o turbulent Stationary flows
i el e vibrated granular materials
Computing f e Any system with a “markovian coarse graining”.
The large H i
deviations @ Always structured according to the following scheme :
Model with
drift ‘><
Conclusion macroscopic relevant (hydrodynamical)
external forcing degrees of freedom —

@ No detailed balance, no t — —t invariance
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@ External forcing fluctuations are of interest for the
physicist:

e Not impossible to measure experimentally
(Labbe,Pinton,Fauve 1996):
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e Input for models of turbulence (large-scale forcing)

e Related to the dissipated power, i.e. to the entropy
production.
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Introduction @ |s it possible to understand the fluctuation properties of
The model the injected power in a dissipative NESS ? Do exist
02 common features ?
Computing f . . . .
T:e l‘ieg @ What is the relation between this coarse-grained
Elfs] . . .
deviations approach and the exact microscopic relation, the
Vodel with so-called Fluctuation Theorem ?
Conclusion @ We consider in this talk a (family of) toy-model of

dissipative system, driven in a non-trivial stationary
state, and perform exact computations related to the
injection properties.
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Zero=T Glauber dynamics (difg’:aﬁve)
Introduction e T

The Idf

Computing f \

The large Poissonian flip (injection)
deviations Spin number 0

Model with
drift

conclusien @ The zero-T Glauber dynamics is :
2dt

RN

R

T dissipative event

individual transition rates
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Introduction

The model @ The spin variables are s; = +1 for j = —N, N — 1.
el @ System more easily described by the domain wall
Computing f VarlableS

The large

deviations

Model with nj= (1- SiSjt1 )/2

drift

Conclusion (also the energy density)

@ supresses the trivial symmetry (Vj s; — —s;).




D CEEERE @ Stationary state characterized by a mean energy

F: & ile:
arago profile:

Introduction <ni> ~ (7‘-|i|)_1

The model

The Idf

Computing f <€> = 2A[Pr0b(30 = 31) — PI’Ob(SO = —31 )]
= 2X(S0S1) = 2A[A + 1 — VA2 + 2)]

The large
deviations

Model with
drift

Conclusion
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@ And an average injected power

Bulk limited regime

\Injection limited regime




Beyond the mean values
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Farggo&
Piard @ The instantaneous injected power £(t) has a singular

Introduction pdf . P(E) = A5(5) + Preg(f)-
@ Consider rather

The model

The Idf

Computing f

T
The large I_I :/0 dug(u)

deviations

Model with

drit @ What is the distribution of /7 for large 7 ?
@ Large deviation theorem states that

Conclusion

Prob(M/7 =¢) o exp (Tf(g))

large 7

f(¢) is called the large deviation function (Idf)
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Introduction

The model

@ The Idf characterizes the fluctuations beyond the

“e il f central limit theorem (restricted to f/((c)) and f”((c))).
omputing

T @ General properties: f(¢) < 0, concave, f((¢)) = 0.
deviations . . . .

- @ Time-averaging ~ low-band filtering, close to

it experimental measurements.

Conclusion

@ But an involved object: the knowledge of the full
dynamics is required to compute f(e).
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The Idf for the spin model

@ f(e) is given by the inverse Legendre transform of

2 > N2(€2* —1)(¢Yy + €2)
gle) =~ [~ o og (1 T W T 1202/4 1 2)
Yy = [2iu+1+2vV—u2 + iu)?

that is

f(2) = min(g(0) — az)

)



How to get f ?
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Farago 2 @ The dynamics of the system is given by a master
Pitard equation
Introduction

The model

The Idf

N—1
OP(C) = > [w(C; — C)P(C)) — w(C — C))P(C)]
j=—N

Computing f

The lar C=(s_ny==+1,s_ ..., SN—
d;\ia?igfs ( N ) N+1, sy ON—1 )
Model with =(n_y=0o0r1,...,ny_1)

drift c c

Conclusion C] — C except Sjj - _S/

@ The stochastic operator is a 22N x 22N (sparse) matrix.
Its elements are :

w(C — Cp) = A (Poisson)
w(C — Cj) = nj+ nj_y forj# 0 (Glauber)




1D dissipative

Farago &
Pitard

Introduction
The model @ The master equation is useless to compute pdf of
The Idf time-extended quantities like M = [ due(u)...

mp”””gf @ We have to enlarge the description to include the
ne large . .
S temporal dimension of 1 :

Model with
drift

P(C, N, t) is the probability that the system has the
configuration C at t and has received an energy I from
the injection in the interval [0, t]

Conclusion
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@ P(C,M,t) obeys a modified master equation (all n; refer
Introduction to state C and ﬁ/ =1 - nj):

The model
The Idf OP(C,N) = ATy + Z T;
Computing f J#0

The large To = P(C'()7 n- 2)n,1no -+ P(Co, N+ 2);7,1?)0
deviatior A~ ~

Mid?e\?il + P(Co, M)n-1710 + A—1no] — P(C, M)
drift T] = P(C/', n)(ﬁ/ + ﬁj—1) - P(Cv n)(n] + I7/;1)

Conclusion

@ Usual trick: consider the Laplace transform wrt I1 :

F(c)=>_P(c,ne"
n
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Pitard @ The evolution equation for F is

Introduction &F(C) — )\UO + Z U/
The model i

J#0
Uo = F(Co)€**n_1mo + F(Co)e™2*_1 o
— + F(COA)[n,: flo + N_1no] — F(C)
deviations U= F(Cj)(nj +hj_q) — F(C)(nj + nj—1)

Model with
drift

The Idf

Computing f

@ Typically, F(C, t) is a sum of exponential
(diagonalization of the master operator), whence

Conclusion

F(c, t‘)| x exp[g(a)f]

arge t

where g(«) is the largest eigenvalue of AUy + > U;.
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e @ The Laplace transform of Prob(M) is given by

Introduction

The model (™) =) F(C) o exp[g(a)t]
C

large t

The Idf

mpmmgf @ The inverse Laplace transform yields the cited result:
he large
?2!:'?\:; 1 0+ico
arif Prob(M = te) / daexp(tfac + g(a)])
2im 0—ioco

Conclusion

~ exp (t. ming[ac + g(a)])

(It is @ min : maximum principle of complex analysis :
no inner maximum)

@ So, what is the largest eigenvalue of Uy + > U; ?




Fermionic diagonalization
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R : : . N
IR @ The answer is almost equivalent to the diagonalization

Introduction of the operator...it is by chance feasible.
The model @ We consider an abstract state space of dimension 24N,

e o tensorial product of the individual domain walls state
spaces. A basis is the collection of vectors

Computing f

The large
deviations

Model with |n—N7 sy nN—1> = |C>

drift

Conclusion

e Consider the vector |¢) = > F(C)[C)
c

Its time evolution is given by

t|¢) = H|9)
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Farggo&
Pitard H:/\[eza05071+e 2 a'go'+1+o'oo' 1+og0” 171]

Introduction + + + +
+ E 20, 10 + 0 40/ +U/ 10 — o 40/ =0 y0/]

The model j#0

The Idf

where, acting on the j-th domain wall state space,

Computing f

The large

deviations + 0 1 - 0 O
Model with 7 = 0 0 )/’ 9 T\ 1 0
drift

Conclusion

@ Example :

oy 0—1|¢p) = Z F(C)ooo_1|C)
= ZF n0n71|Co>
c

= F(Co)non—1|C)
C




the Wigner-Jordan transformation
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Faragola @ Fermionization:
Pitard

Introduction C—N = O-iN
The model CjN — O_:N
The Idf Lz >
Computing 1 Cj =0, 0ZNOZN41 -+ Oj1
The large + _ - Z z z
devwatiroutws Cj - Uj o NU—N+1 Uj—1
Model with
drift 1
z .
G where 0“ = < 0 _q | are truly fermionic operator,
i.e.
{ci,¢} =0

{c.cf}=0

{c, ¢} =i,
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Farggo&
Piard e Expressed in terms of the ¢, c*, the operator H is

Introduction quad ra'[IC .

The model

The Idf

1
cy BomCi + §c,,D,,mcm -2

Computing f

1
H= E |:C;;_AnmCm + §
nm
The large
deviations

Model with @ One shows that H is diagonalizable, i.e. a linear
ot fermionic transformation gives

Conclusion
1 1
H=> Mg <g;§q —~ 2> +5T(A) = A
q

whence we deduce the eigenvalues of H
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Farago & @ The eigenvalues of H are of the form

Pitard

1 1
Introduction é Z Eq/\q + ETI‘(A) - )\
q

The model

1he o with e = +1 and A4 the positive eigenvalues of
Computing f

. A B
it M= < D —A>

Model with

drift

@ As aresult, we get that

Conclusion

9(a) = 41,.7T7{du J;ZEZ; + %Tr(A) )

_2 [ X2(€2 — 1) (thy + €2°)
= W/o dur log (1 T e TR0/ ) )

(contour enclosing the positive eigenvalues only)




The large deviations
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e @ Typical shape of the large deviation functions (rescaled

wrt the mean):

Introduction

The model

The Idf

Computing f

The large
deviations

Model with
drift

Conclusion

2 3
pi<p>

@ No negative branch !
@ A curvature strongly dependent on A
@ A noticeable positive skewness.
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@ When rescaled wrt the mean and curvature:

Introduction

The model

The Idf

Computing f

The large
deviations

Model with
drift

4t [==H(p)o(A) — modsl |, A=1 or 6

. —{(p)/o{h) — model | ;A=0.1 or +ea|
Conclusion Y
5 |-~ parabola. —{(x-1/2/2 ?
o 1 2 3 4 5
plep>

@ Skewness not negligible, weak but complicated
dependence wrt \.
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The curvature as a function of \:

1

curvature g'(0)/(g'(0))?

o
N

o
@

o
o

o
i

— almost proportional to (¢):

1

0.8

Ratio ofe
o
*

o
b

o
N




The pure Poissonian model
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S @ Consider an injection of pairs of domain walls without

Pard negative injection and rate p.
Introduction ) The uinjected eﬂergy" during - IS s|mp|y tW|Ce the
The model number n of pairs of dw emitted — Poissonian
el statistics:
Computing f
n

The | T
de\ia?i?ri P(n) — e PT (p )

n!

Model with
drift

for which one has all the cumulants equal to pr and

Conclusion
9
fle =2n/7) = 5[1 —log(e/2p)] — p

- —§(1 —e/2p)2 + %(1 —e/2p)% + ...

— curvature/mean=0.5 here whatever the rate. But we
have rather 0.8 except for A — O0...




1D dissipative @ A way to improve the model is to assume that in

T average, Ngy()) are emitted, not necessarily 2
S @ In that case: curvature/mean=1/ng,. Thus, ng, ~ 1.25.
The model @ But this model cannot account for the skewness ¥,
The Idf defined by
Computing f
. X = (NN /()
deviations g gx
Model with f(g) = _§(€/<€> - 1)2 + ?(5/<€> - 1)3 +
drift
Conclusion @ The PPP states x = 1 whatever ny, whereas we have

1

0.6
B
0.4

0.2




Pure Poissonian discrete model
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@ A slight modification : the emission of ng, domain walls
is discrete, with a probability pAt in a time interval At
(remanence).

@ In that case,

Introduction
The model

The Idf

Computing f

Gorations f(e) = 1 (- LN) log - ?TAWI (iﬂ) eAt/Ngw

Model with At pAt

i;:c\ugon = —1( € — 1)2 p l € — 3 (1 — 2pAt)/)
2" Nawp 1—pAt 3! Nawp (1 — pAt)?

+.

@ We get x = (1 — 2pAt)/(1 — pAt). Thisis < 1.
@ Conclusion : The domain walls cannot be emitted too
closely from each other.
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Farago & Note: we can extract At(\) from o and x :
Pitard

Introduction 3

The model 25

The Idf

Computing f 4

The large 515

deviations

Model with 1

drift

Conclusion 0.5
0

0 2 4 ; 6 8 10

— not too bad. Defines the time a dw needs to be
effectively “absorbed” in the system. Related to the dw
population near the boundary.




Adding a drift
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Pitard The model can be generalized in the following way:

Introduction @ domain walls move toward the boundary with rate
The model 2p < 2, away from it with rate 2q = 2(1 — p). Notice
The Idf O < p < 1i
::'“l‘”“”gf @ In that case the Legendre transform of the Idf is
e large
devwatio{ws 1 [~ d 9 —
| with gla) = = /- du u—log F(u) = —/ du log Flu)
(I\j/lr%?e wit 7 Joo du ™ Jo

Conclusion Y gw(w)(w(u) + 1)
Flu)=1+A —ira

w(u) = 2g4(e* 1)
' Wlu) +4p,q,

P(u) = |y (4i'¢;)|2 = |1+ 2iu+ /(26w +1)2 — 1«;3|2

@ The model has now two parameters : A and p




Physical observables

1D dissipative

Farggo& L.

Pl @ The mean injected power:
Introduction
The model

The Idf

Computing f

The large
deviations

Model with
drift

Conclusion

Obviously, the injected power increases with 1 — p.




1D dissipative

Farago &
Pitard

Introduction
The model

The Idf

Computing f

The large
deviations

Model with
drift

Conclusion

@ The scaled curvature o/(e):

1.1+

of<e>

@ Note a region > 1 near p = 0: slightly paradoxical: ng, < 1!

@ Actually, everything is normalized by the average (¢) : ngy
measures the decorrelation of the two injections in the two
halves of the system.

@ For p=0and )\ = oo, the two injections are perfectly
decorrelated, thus the effective Poisson process emits only
one dw.

@ Still paradoxical : p > 1/2 shouldn’'t have ny, = 2..3



1D dissipative

Farago &
Pitard

The skewness has a complicated behaviour :

Introduction

The model

The Idf

i 5
1 ) o
i s
A A
e LA,
Computing f e
= et e
A e e e
0.9 L
The large i

o
o

deviations

Model with
drift

Conclusion

— Still unclear. ..
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Conclusion:

Introduction

The model @ Simple model of energy injection in dissipative systems.
LS @ Quite rich behaviours of the three first cumulants of the
SR distribution.

The large . . . .

deviations @ Interpretation in terms of effective Poisson processes.
g @ Can this kind of models be helpful for experiments
Conclusion where dissipative structures are generated near a

moving boundary and migrates into the bulk ?

@ Perspectives: adding T, just one half of the system,
inhomogeneous drift, etc. ..
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