Plane Couette flow at the laminar-turbulent transition

Paul Manneville

Ecole Polytechnique, Palaiseau, 91128, France paul.manneville@ladhyx.polytechnique.fr

transition to turbulence ??? \rightarrow closed vs. open flows

closed flows (e.g. convection) \sim confinement effects

- \rightsquigarrow confined *vs.* extended
- \rightsquigarrow temporal *vs.* spatio-temporal chaos
- \rightsquigarrow pretty well understood

open flows less well understood (even apparently simplest case of parallel flows) ● *linear stage* → standard **stability analysis**

 \rightsquigarrow inflectional vs. non-inflectional base profiles

 $\operatorname{Re} = \Delta U \ell / \nu = (\Delta U / \ell) \times (\ell^2 / \nu) = \tau_v / \tau_a$

- \diamond inflectional \rightarrow linear instability (inertial), e.g. wake <u>globally super-critical</u> transition to turbulence at low Re
- ◊ non-inflectional → no instability at low Re, e.g. boundary layer possible viscous instability at large Re = Re_{TS}
 → <u>conditional stability</u> is generic (nonlin. instab. at Re < Re_{TS})

• specific role of *advection**

physical consequence ~> interaction <u>mean flow/fluctuation</u>

- \rightsquigarrow induction of streaks by streamwise vortices
- \rightsquigarrow lift-up \rightsquigarrow universal perturbation amplification mechanism
- \rightsquigarrow transient energy growth even is stable flows (lim. $t \rightarrow \infty$)
- *see, e.g. P. Schmid, D.S. Henningson, Stability and Transition in Shear Flows (Springer, 2001)

• direct transition (*by-pass*) to turbulence

induced by transient perturbation growth in a laminar linearly stable flow \rightsquigarrow nucleation of turbulent spots

boundary layer plane Poiseuille plane Couette

similar for Poiseuille pipe flow (Ppf)

- phenomenology of plane Couette flow (pCf)
 - no linear instability mode
 - no overall advection

experiments: Saclay group (1992–2002) result:

- Re < Reg $\simeq 325 \rightsquigarrow \underline{\text{global}}$ stability of base flow
 - \rightsquigarrow systematic return to laminar flow when $t \rightarrow \infty$
- Re > Reg \rightsquigarrow regime at $t \rightarrow \infty$ may be <u>turbulent</u>
 - \rightsquigarrow **nonlinear** instability

against (localized) finite amplitude perturbation

more precisely \rightsquigarrow bifurcation diagram

vicinity of Reg ??? \sim experiments (mostly S.Bottin's PhD, 1998):*

(1) nucleation of spots ("S") \rightarrow amplitude of initial perturbation seems to diverge $A \sim 1/(\text{Re} - \text{Re}_{g})^{\gamma}$ as $\text{Re} \rightarrow \text{Re}_{g+}$ (γ ???) and tend to zero as $A \sim \text{Re}^{-\alpha}$ for $\text{Re} \gg \text{Re}_{g}$ (α ???)

(2) lifetime of turbulent state prepared at Re \gg Reg quenched ("Q") at Re < Reg \rightsquigarrow transients lifetimes $\tau \quad \rightsquigarrow$ distribution $\mathcal{N}(\tau' > \tau) \sim \exp(-\tau/\langle \tau \rangle)$ $\rightsquigarrow \langle \tau \rangle$ increases rapidly as Re \rightarrow Reg_

*S. Bottin, F. Daviaud, P. Manneville, O. Dauchot, Europhys. Lett. **43** (1998) 171–176.

early suggestion* $\langle au
angle \sim 1/({
m Reg}-{
m Re})^eta, \ eta \sim 1$

questioned by Hof. *et al.*[†] who propose $\langle \tau \rangle \sim \exp(b\text{Re})$ based on (*i*) analogy with results for Ppf and (*ii*) re-analysis of data

*S. Bottin & H. Chaté, Eur. Phys. J. B 6 (1998) 143–155.
 [†]B. Hof, J. Westerweel, T.M. Schneider, B. Eckhardt, Nature 443 (2006) 59–62.

why ??? Hof *et al.* \rightsquigarrow Ppf transients \equiv chaotic transients associated with **homoclinic tangle** \rightsquigarrow low dim. dynamical systems viewpoint resting on existence of *non-trivial* **unstable** periodic orbits (UPOs)

◊ such solutions exist in Ppf : Faisst & Eckhardt; Kerswell et al.*

as well as in pCf : Nagata, Clever & Busse[†]

*for a review, see: R.R. Kerswell, Nonlinearity 18 (2005) R17–R44
[†]M. Nagata, J. Fluid Mech. 217 (1990) 519–527;
R.M. Clever, F.H. Busse, J. Fluid Mech. 344 (1997) 137–153.

not a surprise \rightarrow mechanism ? cf. "regeneration" cycle: lift-up + instability propagation \rightsquigarrow by-product of instability

analogous situation for pCf

nonlinear feed-back

fugitively observed in experiments see: Hof et al., Science 305 (2004) 1594-1598.

• homoclinic tangle ???

unstable periodic orbit with stable and unstable manifolds 1 transverse intersection \Rightarrow uncountable infinity of intersections (Poincaré)

chaotic repellor (invariant set of homoclinic points)

- \rightsquigarrow chaotic transients around it
- \rightsquigarrow exponential distribution of transient lifetimes
- \rightarrow variation of decrement with control parameter ???

• Ppf \rightsquigarrow case not completely settled*

exponential transient length distribution with decrement $\searrow 0$

- either as $(\text{Re}_g \text{Re})$ for $\text{Re} \rightarrow \text{Re}_{g_{-}}$ (~ critical behavior)
- or as exp(-bRe) as Re \nearrow

possible origin of discrepancies:

- role of experimental conditions ($\Delta P / \Delta x = \text{cst.}$ or cst. flux)
- finite time/size effects

 \rightarrow is the analysis in terms of low dim. dynam. syst. relevant? <u>temporal</u> chaos OK if system is **0D** but Ppf is **quasi-1D**

 pCf → beyond phenomenology ??? modeling in a deliberately <u>spatiotemporal</u> perspective to accounting for **quasi-2D** feature
 → personal work in coll. with M. Lagha (PhD thesis, 2006)

*Peixinho & Mullin, Phys. Rev. **96** (2006) 094501; Willis & Kerswell, Phys. Rev. Lett. **98** (2007) 014501; Hof *et al.*, Nature **443** (2006) 59–62.

modeling → low dimensional ⇒ freeze all the space dependence
 → ODEs governing a small set of amplitudes, cf. Lorenz model
 similar spirit for open flows → Waleffe models
 → well adapted only to confined systems

(or systems with periodic b.c. at "short" distances)

↔ freeze cross-stream dependence, let in-plane dependence free ↔ partial differential equations, cf. <u>Swift-Hohenberg model</u> ↔ adapted to **extended** systems

use Galerkin method to obtain model (2.5D) from primitive (3D) equations

previous work \rightsquigarrow stress-free b.c. at the plates

 \rightsquigarrow interesting but unrealistic \rightsquigarrow realistic no-slip b.c.

explicit expression \rightsquigarrow last slides (if someone is interested)

- *a priori* relevant general features
 - non-normal linear terms including lift-up mechanism
 - linear viscous damping
 - nonlinear advection terms preserving perturbation kinetic energy
 - linearly stable base flow for all Re
- *a posteriori* relevant features (from numerical simulations)
 - extensivity of homogeneous turbulent state
 - sub-critical "laminar \leftrightarrow turbulent" transition (Reg ???)
 - transient states with exponentially decaying lifetime distribution
 - turbulent spots resemble what is experimentally observed
- \rightsquigarrow present results relevant to the ''critical/exponential'' controversy \rightsquigarrow define dimensionless system's size
- \rightsquigarrow aspect ratio $\Gamma_x = L_x/d$, $\Gamma_z = L_z/d$, $d \equiv$ gap,
 - $\Gamma = \Gamma_x \times \Gamma_z$, here numerical experiments (periodic b.c.)
 - at moderate aspect-ratio $\Gamma = 16 \times 16$ ($D = 32 \times 32 \times 2$)
 - at large aspect ratio $\Gamma = 128 \times 64$ ($\mathcal{D} = 256 \times 128 \times 2$)

compare to laboratory experiments \rightsquigarrow typically 190 \times 35 and to observed internal scale: <u>coherent streak segments</u> \sim 6 \times 3 \diamond sub-criticality ($\Gamma = 16 \times 16$, adiabatic decrease of R)

transition <u>transient</u> \rightarrow "sustained" at Re $\simeq 175 \simeq \text{Re}_{g}$ Re^{model} $\sim 0.5 \text{Re}_{g}^{\text{lab.}} \rightarrow$ viscous dissipation and energy transfer to <u>cross-stream small scales</u> underestimated (truncation) but qualitative spatio-temporal features are preserved study first the **decay** transition <u>turbulent</u> \rightarrow <u>laminar</u> \diamond transients ($\Gamma = 16 \times 16$)

Q-type experiments: state prepared at $\text{Re}_{i}=200$ Re decreased to $\text{Re}_{f}<\text{Re}_{g}\ll\text{Re}_{i}$

 \rightsquigarrow variation of slopes with Re ???

- exponential decrease of slopes, hence $\langle \tau \rangle \sim \exp(b \text{Re})$)
- off-aligned points at Re = 174 and 174.5 suggest <u>cross-over</u> to critical behavior very close to Re = 175

statistical improvement beyond reach of numerical means used for that experiment \rightsquigarrow explanation ???

visualizations for $\Gamma = 16 \times 16$ do not discriminate <u>temporal</u> from <u>spatio-temporal</u> behavior

<u>temporal</u> is likely in view of size of streak segments compared to Γ

 \rightsquigarrow consider a larger domain $\rightsquigarrow \Gamma = 128 \times 64$ (8 \times 4 times larger)

result: turbulent state can be maintained over large time periods well below $R = R_g = 175 \rightarrow$ expensive to study numerically \rightarrow limited number of trials \rightarrow no direct statistics (experimentalists do a better job, but with other limitations)

• video of quench at $R_{\rm f} = 167$

 \rightsquigarrow nucleation of laminar domains that expand \rightsquigarrow late stage is a retraction of the turbulent domain

 \rightarrow suggests that, for $\Gamma = 16 \times 16$, last stage is also a retraction \rightarrow turn the question to "when does the transient begins ?"

 → Pomeau's idea of nucleation expected from the connection between a globally <u>sub-critical bifurcation</u> and a <u>first-order thermodynamic phase transition</u>*

*in: Bergé, Pomeau, Vidal, L'Espace Chaotique (Hermann, 1998) Chapter IV.

test the nucleation idea ? \rightarrow return to $\Gamma = 16 \times 16$

- $Re = 200 \rightsquigarrow$ Gaussian histogram = incoherent superposition chaotic mixture of laminar and chaotic small structures

- $\text{Re} = 175 \simeq \text{Re}_g \rightsquigarrow \text{max shifts}$; exponential tail at low energy coherent large deviation \rightsquigarrow germ that grows if large enough \rightsquigarrow irreversible decay to laminar stage when $E_t < E_{\text{lim}}$

back to the wide system \rightsquigarrow long time series

\bullet video 1 \rightsquigarrow R = 170, full resolution 59000 < t < 67000

shows existence of large laminar domains that last very long \rightsquigarrow wait to see the system decay ???

 \rightsquigarrow compare to small system ($\Gamma = 16 \times 16$)

\bullet video 2 \rightsquigarrow $R = 170,\,$ "low" resolution 47000 < t < 67000

obtained by binning original large domain into squares 8×8 further grouped to give larger rectangular or square sub-domains, i.e. 16×16 to be used for comparison with $\Gamma = 16 \times 16$ system

yields individual time series analogous to those of smaller systems \rightsquigarrow construct histograms

 \rightarrow the 16 × 16 system "dies" at the end of a transient ($E_t < E_{\text{lim}}$) while a given [16 × 16] sub-domain of the 128 × 64 system that become laminar can "resuscitate" by contamination from turbulent neighbors

 \rightsquigarrow first guess : convert frequency of laminar domains of given size in the 128 × 64 system into transient length distribution for the 16 × 16 system (\rightsquigarrow may need correction due to subtle size effects) size effects ??? \rightsquigarrow long-range processes linked to pressure (present in the model \neq more simplified models not directly derived from NS equations, e.g. CMLs)

best seen when studying hysteresis at the transition

up to now <u>turbulent \rightarrow laminar</u> transition *via* nucleation and development of laminar patches

now <u>laminar \rightarrow turbulent</u> $\sim \rightarrow$ starting point ?

a) localized spot \rightsquigarrow two parameters: extension and intensity \rightsquigarrow systematic study left for future work

b) more or less homogeneous low amplitude "noise" \rightarrow to be presented (briefly)

relevant "noise" obtained by "attenuating" a turbulent solution

"edge of turbulence" \rightarrow with this i.c. 174.925 < R < 174.95

change i.c.?

change energy contents of i.c. at given R or change R at given i.c. "noisy i.c." \rightarrow rough <u>bifurcation diagram</u> but "basin boundary" depends on i.c. amplitude and homogeneity

very low energy noisy i.c. ???

→ different transition due to
 different early stage:
 initial smoothing

initial smoothing

 \sim leaves few germs

$$\rightsquigarrow$$
 germs grow if R large

- \rightsquigarrow next form transverse bands
- \rightsquigarrow final turbulent invasion stage
 - if R significantly above 200

 \rightsquigarrow study laminar–turbulent coexistence and fronts produce a banded i.c. and change R

evidence of non-local effects \rightsquigarrow speed depends on turbulent fraction

interpretation is delicate : periodic b.c. influence band orientation but role of instantaneous turbulent/laminar global pattern is obvious both for onset and decay of turbulence

conclusion

- context: <u>sub-critical</u> transition to turbulence
 → more specifically Ppf & pCf → similar (same ?) problem
- origin of difficulties: nature of the non-trivial solution competing with the base state
- answers ? → dynamical systems and chaos stems from temporal analysis valid for confined system
 → classical theory of <u>chaotic transients</u> existence of unstable periodic solutions + tangle these solutions exist (calculated/observed) but is this enough ?
 - pipe Poiseuille flow \rightsquigarrow quasi 1D
 - plane Couette flow \rightsquigarrow quasi-2D

 \rightsquigarrow Pomeau (1986, 1998) \rightsquigarrow nucleation problem in connection with first-order (thermodynamic) phase transitions

• modeling approach \rightsquigarrow dimensional reduction in physical space \rightsquigarrow different from standard dynamical-system viewpoint

low-order truncation of a Galerkin projection of NS equations

- negative feature : energy transfer through cross-stream (small) scales underestimated → lowered transitional range
- positive aspect → correctly extract energy from base flow through interplay of streamwise vortices and streaks (large in-plane structures) → qualitatively reproduces hydrodynamical features (e.g. non-local pressure effects) and transition properties
- even in absence of firm conclusions, most interesting results :
 - ◊ better appreciation of drawbacks and virtues of dynamical system approach and phase transition viewpoint :
 → reinterpretation of transient length distribution
 - dimpse on origin of complications : size effects and role of topology of laminar/turbulent domains
 - \diamond suggests to look at Ppf along same lines (quasi-1D \neq 0D)

- two levels of open questions and perspectives
 - Immediate, concrete, <u>hydrodynamical</u> consequences for other globally sub-critical flows experiencing wild transition to turbulence *via* streaks, streamwise vortices, spots... and for transition control
 - ◊ abstract and <u>general</u>: role of noise and statistics → **nature** of the turbulent attractor and **thermodynamic** approach to far-from-equilibrium systems theory in continuous media

Acknowledgments

```
M.Lagha (co-worker), C.Cossu, J.-M.Chomaz,
P.Huerre (LadHyX), B.Eckhardt, J.Schumacher
(Marburg), S.Bottin, O.Dauchot, F.Daviaud,
A.Prigent (Saclay), L.Tuckerman, D.Barkley
(ESPCI);
```

IDRIS (Orsay) projects #61462, 72138

• the model

 \rightarrow base flow $u = u_b(y) = y$ polynomial expansion of perturbations (here lowest order trunc.)

$$\{u', w'\} = \{U_0(x, z, t), W_0(x, z, t)\} B(1 - y^2) + \{U_1, W_1\} Cy(1 - y^2)$$

$$v' = V_1(x, z, t) A(1 - y^2)^2$$

anticipated to be good enough since

- perturbations known to occupy the full gap for $\text{Re}\sim\text{Re}_{\text{g}}$
- no-slip functions dissipate more than stress-free basis functions
- Galerkin expansion possible (but tedious) at higher orders

• continuity equation

$$\partial_x u' + \partial_y v' + \partial_z w' = 0$$

by projection \rightsquigarrow

$$\diamond$$
 even part (streaks $\rightsquigarrow \{U_0(z)\})$

 $\partial_x U_0 + \partial_z W_0 = 0$

 \diamond odd part (streamwise vortices $\rightsquigarrow \{V_1(z), W_1(z)\})$

$$\partial_x U_1 - \beta V_1 + \partial_z W_1 = 0$$
 $\beta = \sqrt{3} \approx 1.73$

• linear momentum

 \diamond

$$\partial_t \mathbf{v}' + \mathbf{v}' \cdot \nabla \mathbf{v}' = -\nabla p' - u_{\mathsf{b}} \partial_x \mathbf{v}' - v' \frac{\mathsf{d}}{\mathsf{d}y} u_{\mathsf{b}} \hat{\mathbf{x}} + \nu \nabla^2 \mathbf{v}'$$

◊ in-plane, even part (streamwise only, spanwise similar)

$$\partial_t U_0 + N_{U_0} = -\partial_x P_0 - a_1 \partial_x U_1 - a_2 V_1 + \operatorname{Re}^{-1} \left(\partial_{xx} + \partial_{zz} - \gamma_0 \right) U_0$$
$$N_{U_0} = \alpha_1 (U_0 \partial_x U_0 + W_0 \partial_z U_0) + \alpha_2 (U_1 \partial_x U_1 + W_1 \partial_z U_1) + \alpha_3 V_1 U_1$$
$$\diamond \text{ in-plane, odd part} \text{ (streamwise only, spanwise similar)}$$

$$\partial_t U_1 + N_{U_1} = -\partial_x P_1 - a_1 \partial_x U_0 + \operatorname{Re}^{-1} (\partial_{xx} + \partial_{zz} - \gamma_{1||}) U_1$$
$$N_{U_1} = \alpha_2 (U_0 \partial_x U_1 + U_1 \partial_x U_0 + W_0 \partial_z U_1 + W_1 \partial_z U_0) - \alpha_4 V_1 U_0$$
$$\underline{\text{wall-normal}}$$

$$\partial_t V_1 + N_{V_1} = -\beta P_1 + \operatorname{Re}^{-1} (\partial_{xx} + \partial_{zz} - \gamma_{1\perp}) V_1$$
$$N_{V_1} = \alpha_5 (U_0 \partial_x V_1 + W_0 \partial_z V_1)$$

all coefficients combinations of integrals in the form

$$J_{n,m} = \int_0^1 y^n (1 - y^2)^m dy = \sum_{k=0}^m \binom{k}{m} \frac{(-1)^k}{2k + n + 1}$$