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transition to turbulence ??? ! closed vs. open flows

closed flows (e.g. convection) ! confinement effects
! confined vs. extended
! temporal vs. spatio-temporal chaos
! pretty well understood

open flows less well understood
(even apparently simplest case of parallel flows)
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• linear stage ! standard stability analysis

! inflectional vs. non-inflectional base profiles
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Re = ∆U!/ν = (∆U/!) × (!2/ν) = τv/τa

" inflectional ! linear instability (inertial), e.g. wake
globally super-critical transition to turbulence at low Re

" non-inflectional ! no instability at low Re, e.g. boundary layer
possible viscous instability at large Re = ReTS
! conditional stability is generic (nonlin. instab. at Re < ReTS)
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• specific role of advection∗

physical consequence ! interaction mean flow/fluctuation
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! induction of streaks by streamwise vortices

! lift-up ! universal perturbation amplification mechanism

! transient energy growth even is stable flows (lim. t → ∞)
∗see, e.g. P. Schmid, D.S. Henningson,

Stability and Transition in Shear Flows (Springer, 2001)
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• direct transition (by-pass) to turbulence

induced by transient perturbation growth

in a laminar linearly stable flow ! nucleation of turbulent spots

boundary layer plane Poiseuille plane Couette

similar for Poiseuille pipe flow (Ppf)
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• phenomenology of plane Couette flow (pCf)

– no linear instability mode
– no overall advection

experiments: Saclay group (1992–2002)
result:

– Re < Reg & 325 ! global stability of base flow
! systematic return to laminar flow when t → ∞

– Re > Reg ! regime at t → ∞ may be turbulent
! nonlinear instability

against (localized) finite amplitude perturbation

more precisely ! bifurcation diagram
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vicinity of Reg ??? ! experiments (mostly S.Bottin’s PhD, 1998):∗

(1) nucleation of spots (“S”) ! amplitude of initial perturbation
seems to diverge A ∼ 1/(Re − Reg)γ as Re → Reg+ (γ ???)
and tend to zero as A ∼ Re−α for Re ) Reg (α ???)
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(2) lifetime of turbulent state prepared at Re ) Reg quenched
(“Q”) at Re < Reg ! transients
lifetimes τ ! distribution N (τ ′ > τ) ∼ exp(−τ/〈τ〉)
! 〈τ〉 increases rapidly as Re → Reg−

∗S. Bottin, F. Daviaud, P. Manneville, O. Dauchot,
Europhys. Lett. 43 (1998) 171–176.
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early suggestion∗ 〈τ〉 ∼ 1/(Reg − Re)β, β ∼ 1

questioned by Hof. et al.† who propose 〈τ〉 ∼ exp(bRe) based on

(i) analogy with results for Ppf and (ii) re-analysis of data

∗S. Bottin & H. Chaté, Eur. Phys. J. B 6 (1998) 143–155.
†B. Hof, J. Westerweel, T.M. Schneider, B. Eckhardt, Nature 443 (2006) 59–62.
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why ???
Hof et al. ! Ppf transients ≡ chaotic transients associated with
homoclinic tangle ! low dim. dynamical systems viewpoint
resting on existence of non-trivial unstable periodic orbits (UPOs)

" such solutions exist in Ppf : Faisst & Eckhardt; Kerswell et al.∗

as well as in pCf : Nagata, Clever & Busse†

∗for a review, see: R.R. Kerswell, Nonlinearity 18 (2005) R17–R44
†M. Nagata, J. Fluid Mech. 217 (1990) 519–527;
R.M. Clever, F.H. Busse, J. Fluid Mech. 344 (1997) 137–153.
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not a surprise ! mechanism ?
cf. “regeneration” cycle:

lift-up + instability
propagation ! by-product

of instability

analogous situation for pCf

streaks

lif
t-u

p

instability of

m
ean flow + streak

streamwise vortices streamwise modulation

nonlinear feed-back

fugitively observed in experiments

see: Hof et al., Science 305 (2004) 1594–1598.
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• homoclinic tangle ???

unstable periodic orbit with stable and unstable manifolds
1 transverse intersection ⇒ uncountable infinity of intersections
(Poincaré)
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chaotic repellor (invariant set of homoclinic points)
! chaotic transients around it
! exponential distribution of transient lifetimes
! variation of decrement with control parameter ???
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• Ppf ! case not completely settled∗

exponential transient length distribution with decrement ↘ 0
– either as (Reg − Re) for Re → Reg− (∼ critical behavior)
– or as exp(−bRe) as Re ↗

possible origin of discrepancies:
– role of experimental conditions (∆P/∆x =cst. or cst. flux)

– finite time/size effects

! is the analysis in terms of low dim. dynam. syst. relevant?

temporal chaos OK if system is 0D but Ppf is quasi-1D

• pCf ! beyond phenomenology ???

modeling in a deliberately spatiotemporal perspective
to accounting for quasi-2D feature

! personal work in coll. with M. Lagha (PhD thesis, 2006)

∗Peixinho & Mullin, Phys. Rev. 96 (2006) 094501; Willis & Kerswell,
Phys. Rev. Lett. 98 (2007) 014501; Hof et al., Nature 443 (2006) 59–62.
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• modeling ! low dimensional ⇒ freeze all the space dependence
! ODEs governing a small set of amplitudes, cf. Lorenz model

similar spirit for open flows ! Waleffe models
! well adapted only to confined systems

(or systems with periodic b.c. at “short” distances)

! freeze cross-stream dependence, let in-plane dependence free
! partial differential equations, cf. Swift–Hohenberg model

! adapted to extended systems

use Galerkin method to obtain model (2.5D)

from primitive (3D) equations

previous work ! stress-free b.c. at the plates

! interesting but unrealistic ! realistic no-slip b.c.

explicit expression ! last slides (if someone is interested)
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• a priori relevant general features
– non-normal linear terms including lift-up mechanism
– linear viscous damping
– nonlinear advection terms preserving perturbation kinetic energy
– linearly stable base flow for all Re

• a posteriori relevant features (from numerical simulations)
– extensivity of homogeneous turbulent state
– sub-critical “laminar ↔ turbulent” transition (Reg ???)
– transient states with exponentially decaying lifetime distribution
– turbulent spots resemble what is experimentally observed

! present results relevant to the “critical/exponential” controversy
! define dimensionless system’s size
! aspect ratio Γx = Lx/d, Γz = Lz/d, d ≡ gap,

Γ = Γx × Γz, here numerical experiments (periodic b.c.)
– at moderate aspect-ratio Γ = 16 × 16 (D = 32 × 32 × 2)
– at large aspect ratio Γ = 128 × 64 (D = 256 × 128 × 2)

compare to laboratory experiments ! typically 190 × 35
and to observed internal scale: coherent streak segments ∼ 6 × 3
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" sub-criticality (Γ = 16 × 16, adiabatic decrease of R)
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g ! viscous dissipation and energy transfer to
cross-stream small scales underestimated (truncation)

but qualitative spatio-temporal features are preserved

study first the decay transition turbulent → laminar
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" transients (Γ = 16 × 16)

Q-type experiments: state prepared at Rei = 200
Re decreased to Ref < Reg 2 Rei
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– exponential decrease of slopes, hence 〈τ〉 ∼ exp(bRe))
– off-aligned points at Re = 174 and 174.5 suggest cross-over

to critical behavior very close to Re = 175

statistical improvement beyond reach of numerical means
used for that experiment ! explanation ???

visualizations for Γ = 16 × 16 do not discriminate temporal
from spatio-temporal behavior
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temporal is likely in view of size of streak segments compared to Γ

! consider a larger domain ! Γ = 128 × 64 (8 × 4 times larger)

result: turbulent state can be maintained over large time periods
well below R = Rg = 175 ! expensive to study numerically
! limited number of trials ! no direct statistics
(experimentalists do a better job, but with other limitations)

• video of quench at Rf = 167

! nucleation of laminar domains that expand
! late stage is a retraction of the turbulent domain

! suggests that, for Γ = 16 × 16, last stage is also a retraction
! turn the question to “when does the transient begins ?”
! Pomeau’s idea of nucleation expected from the connection

between a globally sub-critical bifurcation
and a first-order thermodynamic phase transition∗

∗in: Bergé, Pomeau, Vidal, L’Espace Chaotique (Hermann, 1998) Chapter IV.
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test the nucleation idea ? ! return to Γ = 16 × 16
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– Re = 200 ! Gaussian histogram = incoherent superposition

chaotic mixture of laminar and chaotic small structures

– Re = 175 & Reg ! max shifts ↘ ; exponential tail at low energy
coherent large deviation ! germ that grows if large enough
! irreversible decay to laminar stage when Et < Elim
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evidence for Elim & 0.025 (lnElim & −3.7) at moderate Γ
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• video 1 ! R = 170, full resolution 59000 < t < 67000

shows existence of large laminar domains that last very long
! wait to see the system decay ???

! compare to small system (Γ = 16 × 16)

• video 2 ! R = 170, “low” resolution 47000 < t < 67000

obtained by binning original large domain into squares 8 × 8

further grouped to give larger rectangular or square sub-domains,
i.e. 16 × 16 to be used for comparison with Γ = 16 × 16 system

yields individual time series analogous to those of smaller systems
! construct histograms
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! the 16 × 16 system “dies” at the end of a transient (Et < Elim)

while a given [16 × 16] sub-domain of the 128 × 64 system
that become laminar can “resuscitate” by contamination
from turbulent neighbors

! first guess : convert frequency of laminar domains of given size
in the 128 × 64 system into transient length distribution for the

16 × 16 system (! may need correction due to subtle size effects)
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size effects ??? ! long-range processes linked to pressure
(present in the model 3= more simplified models not directly
derived from NS equations, e.g. CMLs)

best seen when studying hysteresis at the transition

up to now turbulent → laminar transition via nucleation and
development of laminar patches

now laminar → turbulent ! starting point ?

a) localized spot ! two parameters: extension and intensity

! systematic study left for future work

b) more or less homogeneous low amplitude “noise”

! to be presented (briefly)
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relevant “noise” obtained by “attenuating” a turbulent solution
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change energy contents of i.c. at given R or change R at given i.c.
“noisy i.c.” ! rough bifurcation diagram

but “basin boundary” depends on i.c. amplitude and homogeneity
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! different transition due to

different early stage:
initial smoothing

! leaves few germs

! germs grow if R large
! next form transverse bands

! final turbulent invasion stage
if R significantly above 200
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! study laminar–turbulent coexistence and fronts

produce a banded i.c. and change R
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evidence of non-local effects ! speed depends on turbulent fraction
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interpretation is delicate : periodic b.c. influence band orientation
but role of instantaneous turbulent/laminar global pattern is obvious
both for onset and decay of turbulence
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conclusion

• context: sub-critical transition to turbulence
! more specifically Ppf & pCf ! similar (same ?) problem

• origin of difficulties: nature of the non-trivial solution
competing with the base state

• answers ? ! dynamical systems and chaos
stems from temporal analysis valid for confined system

! classical theory of chaotic transients
existence of unstable periodic solutions + tangle

these solutions exist (calculated/observed) but is this enough ?

– pipe Poiseuille flow ! quasi 1D

– plane Couette flow ! quasi-2D

! Pomeau (1986, 1998) ! nucleation problem in connection

with first-order (thermodynamic) phase transitions
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• modeling approach ! dimensional reduction in physical space
! different from standard dynamical-system viewpoint

low-order truncation of a Galerkin projection of NS equations
– negative feature : energy transfer through cross-stream (small)

scales underestimated ! lowered transitional range

– positive aspect ! correctly extract energy from base flow through
interplay of streamwise vortices and streaks (large in-plane
structures) ! qualitatively reproduces hydrodynamical features
(e.g. non-local pressure effects) and transition properties

• even in absence of firm conclusions, most interesting results :

" better appreciation of drawbacks and virtues of dynamical
system approach and phase transition viewpoint :
! reinterpretation of transient length distribution

" glimpse on origin of complications : size effects and
role of topology of laminar/turbulent domains

" suggests to look at Ppf along same lines (quasi-1D 3= 0D)
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• two levels of open questions and perspectives

" immediate, concrete, hydrodynamical consequences for other
globally sub-critical flows experiencing wild transition
to turbulence via streaks, streamwise vortices, spots. . .
and for transition control

" abstract and general: role of noise and statistics ! nature
of the turbulent attractor and thermodynamic approach to
far-from-equilibrium systems theory in continuous media
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• the model

! base flow u = ub(y) = y
polynomial expansion of perturbations (here lowest order trunc.)
{
u′, w′

}
= {U0(x, z, t), W0(x, z, t)}B(1 − y2) + {U1, W1}Cy(1 − y2)

v′ = V1(x, z, t)A(1 − y2)2
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anticipated to be good enough since
– perturbations known to occupy the full gap for Re ∼ Reg
– no-slip functions dissipate more than stress-free basis functions
– Galerkin expansion possible (but tedious) at higher orders
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• continuity equation

∂xu′ + ∂yv′ + ∂zw
′ = 0

by projection !

" even part (streaks ! {U0(z)})

∂xU0 + ∂zW0 = 0

" odd part (streamwise vortices ! {V1(z), W1(z)})

∂xU1 − βV1 + ∂zW1 = 0 β =
√

3 ≈ 1.73
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• linear momentum

∂tv′ + v′ · ∇v′ = −∇p′−ub∂xv′−v′ d
dyubx̂ + ν∇2v′

" in-plane, even part (streamwise only, spanwise similar)

∂tU0 + NU0
= −∂xP0 − a1∂xU1 − a2V1 + Re−1 (∂xx + ∂zz − γ0)U0

NU0
= α1(U0∂xU0 + W0∂zU0) + α2(U1∂xU1 + W1∂zU1) + α3V1U1

" in-plane, odd part (streamwise only, spanwise similar)

∂tU1 + NU1
= − ∂xP1 − a1∂xU0 + Re−1(∂xx + ∂zz − γ1||)U1

NU1
= α2(U0∂xU1 + U1∂xU0 + W0∂zU1 + W1∂zU0) − α4V1U0

" wall-normal

∂tV1 + NV1
= −βP1 + Re−1(∂xx + ∂zz − γ1⊥)V1

NV1
= α5(U0∂xV1 + W0∂zV1)

all coefficients combinations of integrals in the form

Jn,m =
∫ 1
0 yn(1 − y2)mdy =

∑m
k=0

(
k
m

)
(−1)k

2k+n+1

32


