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Turbulent transport of particles or droplets is important for:

engineering, chemistry, environment studies, meteorology, astrophysics,
cosmology

Simple modeling:

e statistical description of turbulent flows using synthetic random
ensembles of velocities wv¢(7)

passive approximation (no back-reaction of transported matter
on the flow)

e few collisions

Aim: to discover and understand the origin of robust features rather than
to provide a detailed quantitative description




Passive transport of particles:

e Lagrangian tracers with no inertia:

e particles with inertia:

friction force

% (v — Ut (r))

\ Stokes time

from J. Bec, J. Fluid Mech. 528, 255-277 (2005)




Aim of this talk (based on joint work with Raphaél CHETRITE):

Search for a common ground between some recent ideas in non-equilibrium
statistical mechanics and in turbulence

Particularly convenient place for such a search:

transport in Kraichnan velocities: Gaussian random ensemble of fields v (7)
decorrelated in time widely used in last years to model turbulent phenomena

(General mathematical setup:

dynamics defined by the stochastic differential equation (SDE)
T = ut(x) + ve(x)

(with the Stratonovich convention), where u;(z) is a deterministic vector field
and v¢(z) is a random Gaussian field with zero mean and covariance

= 26(t — s) DY (z,y)




Solution z; of the SDE & = ut(z) + v¢(x) is a Markov diffusion process
such that

= (f(xe)) = ((Lef) (@)

where the generator L, — ﬁj; - 0; + (%dij 0; with

Common setup for:

deterministic dynamical systems, e.g. chaotic
tracers and inertial particles in the Kraichnan velocities
in- and out-of-equilibrium Langevin dynamics

hydrodynamical limits of stochastic lattice gases

(could be extended to non-Markovian processes)




e For deterministic dynamical system, the covariance

D;] (z,y) = 0

e For Lagrangian tracers in the Kraichnan model,

xr =T, ut(x) + ve(x) = ve(r)

e For inertial particles in the Kraichnan model,

x = (r,v), ut(z) + ve(x) = (v, —%(’U — ve(7r)))

e For the Langevin dynamics,
ut(x) +ve(x) = —I'VHe(x) + IIVHi(z) + Ge(xz) + m¢

with [' a positive matrix, Il an anti-symmetric one, [{; the energy function,

(¢ an additional force and 7; the white noise with mean zero and covariance

(nemyr) = 26(t —¢') 87T




e For the diffusive hydrodynamical limits (e.g. of the SSEP),
the macroscopic particle density p:(z) obeys the continuity equation

Otpt +V-jr = 0
with appropriate boundary conditions and
ji(@) = =D (pe(x)) djpe(x) + x* (pe(x)) Bj + ni(x)

with the p-dependent small white noise 7 with mean zero and covariance

(ni(x)nl(y)) = €6t —s)d(z—y)x (p(z))

D and % are the diffusivity and the mobility matrices, F is
the external field, and ¢! o number of microscopic particles

The system may be viewed as a SDE in the space of densities with
—V-D(p)Vp — V-x(p)E, =V - nlp]

Additional elements: extended system -+ smallness of the noise




Crucial role in what follows will be played by

Time reversal leading to the backward process

1. involution (t,z) —— (T —t,z*) = (t*,2*) (may be non-linear)

2. splitting uwt = Ut, 4 + ut,— of the deterministic drift

Definition. The backward process z: is given by the SDE

& = ui(z) + vy ()

/o / . / _ *
where wu; = Uy 4 + Uy _ with Uy 4 = iut*i

and v, = :tv; (with whichever sign)
Remark. w. transforms as a vector field, u_ as a pseudo-vector field

and v+ as one or the other under the involution

General rule: invert the dissipative terms with the vector rule

to avoid that they become anti-dissipative




Examples of time reversals

® In the deterministic dynamics one uses usually the pseudo-vector rule

For the tracer particles, the usual rule is the pseudo-vector one with »* = r

leading to the backward process satisfying
T = —U (1)
For the inertial particles, the natural rule is the vector one for the friction

term Uy 4 + V¢ = (O, %(’U — V¢ ('r‘))), the pseudo-vector one for wu; . = (’U,O),

with (7, v)* = (7, —v) and the backward equation

= v, v = %(v—l—vt*(r))

For the Langevin equation with w; = —I'VH, uy - = IIVH; 4+ Gy,

one gets for the backward process:
& = —I'VH,(z) + OVH.(z) + G}(z) + n,

where H;(z) = Hi+ (2¥), Gi(xz) = —(G= (™))", n; = ()"




® Among natural time reversals are the ones that take

~1 o —1 ;27 o ~ 2 >
Gl L = g dt ajnta Ut,— = Ut — Ut,+

were n:(x) is a density that would be invariant if the generator of the process

were L; at all times.
The generator of the backward process is then given by
/. —177
Ly = Rn,. L.ng R

where (Rf)(x) = f(z™). Up to the involution z + x*, operator L/ is

the adjoint of L,+ w.r.t. the scalar product with density mn,x

Such time reversal (in the stationary setup and with the trivial involution p~

is used for the diffusive hydrodynamical limits




Main idea (going back at least to Onsager-Machlup 1953):

comparison of fluctuations in forward and backward processes

€ enote € eXpectation value oI a 1unctiona 0] € Iorwarda process
Let () denote th tati lue of a functional F of the f d

trajectories [0,7] S+ x4 starting at zg = x

Let <.7:>; denote the same expectation for the backward process

Theorem (transient fluctuation relation).

T
— [ Tt dt

<.7:e 0 5(a:t—y)> — <,7-"* o(xy —a:)>

/

%k

€ Yy

where F*|x¢| = Flx;.] and

Tilwe] = ue 4+ (z¢) - dy H(me) (22 — we,—(z¢)) — (V- ug,— ) (ze)

Proof. Follows from a combination of the Girsanov and Feynman-Kac formulae




Interpretation of J;: rate of entropy production in the environment

relative to the backward process

For two normalized densities n,(r) and n,(x) set

O(x*)

e t=0,T

ny(z) = nes (27

Use n,(xz) (resp. ny(x)) as distributions of the initial points of the forward
(resp. backward) process denoting

— /da: ng (z) (F)_, (FY, = /dﬂv no(z) (F),

0

For Alnn=Inn,(x,.) —Ilnn,(z,), define

T
W = —Alnn + /jtdt
0

and similarly for W = —W?* using Alnn’ and the backward process




Immediate Corollaries of Theorem:
e Detailed fluctuation relation:

7, = (7,

0 0

e Crooks relation: taking F = 6(W — W) implies that the

where p,. (W) (resp. p/ (W)) is the PDF of W (resp. W'):

p. (W) = (§(W — W)}n0 , pép(W) = (J(W' — W)}’né

e Jarzynski equality: taking JF =1 implies that




Entropy balance:
If n, is obtained from n, by the dynamical evolution then —AInn may
be interpreted as the change of instantaneous entropy of the system and

YV becomes the total entropy production.

The inequality

W)

g

that follows from the Jarzynski equality via the Jensen inequality has then
the interpretation of the 2"d Law of Thermodynamics

Remark: Keep in mind that )V depends on the choice of the backward
process and of the initial distributions. Different choices lead to

different notions of entropy production




Case of stationary dynamics

For large times 7, the PDF p(1/) may take the large deviations form
pr (Tw) =~ e T ¢(w)

and similarly for p (7Tw). The Crooks relation implies then that
((w) + w = ¢'(w)

If the forward and backward processes have the same distribution
(e.g. with the vector rule for the drift reversal and x* = x) then (' = (
= the Gallavotti-Cohen symmetry of the rate function (.

Remark. If n(z) is the stationary density and Inn(z) is bounded (e

for the process in a bounded domain) then W/T and + f Tt dt,

differing by a boundary term - A Inn, will have the same

large deviations




Relation to the empirical density and empirical current defined by
T

/5(:1: _ 3y) @y dt

0

T
The large deviations of % [ J+dt may be obtained from those of (n ) governed

J T I
by the rate functional equal to

Iin,j] = / () ) e oy () ) e

if V-j=0 andto +4oo otherwise, where j’ = (4" — d"79;)n is the probability

current associated to the density n. Since

T
e I Jedt :/[u—l—' d™ Y = (ag-d”lu—+ V- u_)ng | (z) do

one has:

min I(n,y
(n,j)€Aw ( )

where A, = {(n,5) | V=0 and w=wn,j]}




The stationary fluctuation relation ((w) + w follows from the one
for the rate functionals I :

In, j] + win, J]

where n*(x) = n(z*) %;)) and j*'(x) =

Remark. Calculation of large deviations rate functions and even their
existence is often not granted, as simple examples show.

Their study for the hydrodynamical limits of stochastic lattice

gases has been a subject of intensive activity (see the courses
of Jona-Lasinio, Derrida, Kurchan, ...)




Multiplicative fluctuation relations

The theory applies to diffusion processes derived from the original one

Example:

it = ui(z) +oi(@), XY = (Gpul)(@) X5 + (80 (x) X,

Matrix X (t) propagates infinitesimal separations dz; between two trajectories
of the process x+:

dxy = X(t)dzg i X(0) =1

For the tangent process (z+, X:), using the pseudo-vector rule to revert the drift

and the involution (z, X)* = («*, X*) with (X*)ij = %sz ij, one obtains

d
Jt|lre, Xt] = —(d+ 1)5 In det(X¢)

and the transient fluctuation relation takes the form

det(X) <5(:13t — ) 6(Xs — X)>(ac,1) _

/

(@i —mya(x; = x))




Define the stretching rates atl > e > af as the eigenvalues of the matrix
% In(X/"X;). If =+ x* preserves the Euclidean metric then

TS ot
|

O(xy —y)d(o.. — O — i
(xs — y) 6(3, a>>(x,0) .

..,01). In the stationary large deviation regime with
<5(33t —y)8(, — 5’)> ~ e 14(9)
(z,0)
this gives the stationary multiplicative fluctuation relation
Z(&) =Y o' = Z'(-5)
i
For Lagrangian tracers in Kraichnan velocities with vanishing mean, Z'(5) = Z(7)

For inertial particles, > o’ = —% but Z'(d) # Z(d) and the Gallavotti-Cohen
relation is deformed to (Fouxon-Horvai 2007):

Z(3) = Z(-&6— =1)




e 7(&) takes its (vanishing) minimal value at & = X, where X is the vector

of the Lyapunov exponents, but it contains more information

e /(0) is analytically calculable in the Kraichnan model in some cases via
relations to integrable models (Bernard-Kupiainen-K.G. 1997,
Delannoy-Chetrite-K.G 2006)

e /(o) isimportant for turbulent transport since it determines:

rate of decay of moments of transported scalar
rate of growth of density and magnetic field fluctuations

multi-fractal dimensions of attractor for tracers in compressible flows
and for inertial particles

polymer stretching in presence of turbulence




e /(o) becomes accessible numerically in simulations of realistic flows and even

experimentally

0
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from Boffeta-Davoudi-De Lillo, Europhys. Lett., 74, 62-68 (2006)
(numerical results for two-dimensional surface flows)




Conclusions

The setup of diffusion processes permits to discuss in a uniform way
fluctuations in models of non-equilibrium statistical mechanics and
of turbulent transport

Fluctuation relations in such systems compare the statistics of fluctuations
of quantities related to entropy production between forward and backward
processes

In stationary systems they induce relations between the rate functions
of large deviations governing the long time asymptotics of fluctuations

Applied to tangent processes, the fluctuation relations induce their

multiplicative extensions

Further analytic calculations, simulations and experimental measurements
of fluctuation statistics in concrete situations are needed




