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Turbulent transport of particles or droplets is important for:

engineering, chemistry, environment studies, meteorology, astrophysics,
cosmology

Simple modeling:

• statistical description of turbulent flows using synthetic random
ensembles of velocities vt(r)

• passive approximation (no back-reaction of transported matter
on the flow)

• few collisions

Aim: to discover and understand the origin of robust features rather than
to provide a detailed quantitative description



Passive transport of particles:

• Lagrangian tracers with no inertia:

ṙ = vt(r)

• particles with inertia:

ṙ = v, v̇ = −
1

τ

`

v − vt(r)
´

↙ friction force

↖ Stokes time

from J. Bec, J. Fluid Mech. 528, 255-277 (2005)



Aim of this talk (based on joint work with Raphaël CHETRITE):

Search for a common ground between some recent ideas in non-equilibrium

statistical mechanics and in turbulence

Particularly convenient place for such a search:

transport in Kraichnan velocities: Gaussian random ensemble of fields vt(r)

decorrelated in time widely used in last years to model turbulent phenomena

General mathematical setup:

dynamics defined by the stochastic differential equation (SDE)

ẋ = ut(x) + vt(x)

(with the Stratonovich convention), where ut(x) is a deterministic vector field

and vt(x) is a random Gaussian field with zero mean and covariance

˙

vi
t(x) vj

s(y)
¸

= 2 δ(t − s) Dij(x, y)



Solution xt of the SDE ẋ = ut(x) + vt(x) is a Markov diffusion process

such that

d

dt

˙

f(xt)
¸

=
˙

(Ltf)(xt)
¸

where the generator Lt = ûi
t · ∂i + ∂id

ij
t ∂j with

ûi
t(x) = ui

t(x) − ∂yj Dij(x, y)|y=x and d
ij
t (x) = Dij(x, x)

Common setup for:

• deterministic dynamical systems, e.g. chaotic

• tracers and inertial particles in the Kraichnan velocities

• in- and out-of-equilibrium Langevin dynamics

• hydrodynamical limits of stochastic lattice gases

(could be extended to non-Markovian processes)



• For deterministic dynamical system, the covariance

D
ij
t (x, y) ≡ 0

• For Lagrangian tracers in the Kraichnan model,

x ≡ r , ut(x) + vt(x) = vt(r)

• For inertial particles in the Kraichnan model,

x ≡ (r, v) , ut(x) + vt(x) = (v, −
1

τ
(v − vt(r)))

• For the Langevin dynamics,

ut(x) + vt(x) = −Γ∇Ht(x) + Π∇Ht(x) + Gt(x) + ηt

with Γ a positive matrix, Π an anti-symmetric one, Ht the energy function,

Gt an additional force and ηt the white noise with mean zero and covariance

〈ηtηt′ 〉 = 2δ(t − t′) β−1Γ



• For the diffusive hydrodynamical limits (e.g. of the SSEP),

the macroscopic particle density ρt(x) obeys the continuity equation

∂tρt + ∇ · jt = 0

with appropriate boundary conditions and

ji
t(x) = −Dij(ρt(x)) ∂jρt(x) + χij(ρt(x)) Ej + ηi

t(x)

with the ρ-dependent small white noise η with mean zero and covariance

˙

ηi
t(x) ηj

s(y)
¸

= ε δ(t − s) δ(x − y) χij(ρ(x))

Dij and χij are the diffusivity and the mobility matrices, E is

the external field, and ε−1 ∝ number of microscopic particles

The system may be viewed as a SDE in the space of densities with

u[ρ] = −∇ · D(ρ)∇ρ − ∇ · χ(ρ)E , vt[ρ] = −∇ · η[ρ]

Additional elements: extended system + smallness of the noise



Crucial role in what follows will be played by

Time reversal leading to the backward process

1. involution (t, x) 7−→ (T − t, x∗) ≡ (t∗, x∗) (may be non-linear)

2. splitting ut = ut,+ + ut,− of the deterministic drift

Definition. The backward process xt is given by the SDE

ẋ = u′
t(x) + v′t(x)

where u′
t = u′

t,+ + u′
t,− with u′

t,± = ±u
∗

t∗,±

and v′t = ±v
∗

t∗ (with whichever sign)

Remark. u+ transforms as a vector field, u− as a pseudo-vector field

and vt as one or the other under the involution

General rule: invert the dissipative terms with the vector rule

to avoid that they become anti-dissipative



Examples of time reversals

• In the deterministic dynamics one uses usually the pseudo-vector rule

• For the tracer particles, the usual rule is the pseudo-vector one with r
∗ = r

leading to the backward process satisfying

ṙ = −vt∗ (r)

• For the inertial particles, the natural rule is the vector one for the friction

term ut,+ + vt = (0, 1
τ
(v − vt(r))), the pseudo-vector one for ut,− = (v, 0),

with (r, v)∗ = (r,−v) and the backward equation

ṙ = v , v̇ =
1

τ
(v + vt∗ (r))

• For the Langevin equation with ut,+ = −Γ∇Ht, ut,− = Π∇Ht + Gt,

one gets for the backward process:

ẋ = −Γ∇H′
t(x) + Π∇H′

t(x) + G′
t(x) + η′

t

where H′

t(x) = Ht∗ (x∗), G′

t(x) = −(Gt∗ (x∗))∗, η′

t = ±(ηt∗ )∗



• Among natural time reversals are the ones that take

ûi
t,+ = n−1

t d
ij
t ∂jnt , ût,− = ût − ût,+

were nt(x) is a density that would be invariant if the generator of the process

were Lt at all times.

The generator of the backward process is then given by

L′
t = R n−1

t∗ L
†
t∗nt∗R

where (Rf)(x) = f(x∗). Up to the involution x 7→ x∗, operator L′

t is

the adjoint of Lt∗ w.r.t. the scalar product with density nt∗

Such time reversal (in the stationary setup and with the trivial involution ρ∗ = ρ)

is used for the diffusive hydrodynamical limits



Main idea (going back at least to Onsager-Machlup 1953):

comparison of fluctuations in forward and backward processes

Let
˙

F
¸

x
denote the expectation value of a functional F of the forward process

trajectories [0, T ] 37→ xt starting at x0 = x

Let
˙

F
¸′

x
denote the same expectation for the backward process

Theorem (transient fluctuation relation).

D

F e
−

T
R

0

Jt dt

δ(xt − y)
E

x
=

D

F∗ δ(x∗
t − x)

E′

y∗

where F∗[xt] = F [x∗
t∗ ] and

Jt[xt] = ut,+(xt) · d
−1
t (xt)

`

ẋt − ut,−(xt)
´

− (∇ · ut,−)(xt)

Proof. Follows from a combination of the Girsanov and Feynman-Kac formulae



Interpretation of Jt : rate of entropy production in the environment

relative to the backward process

For two normalized densities n
0
(x) and n

T
(x) set

n′
t(x) = nt∗(x∗)

∂(x∗)

∂(x)
for t = 0, T

Use n
0
(x) (resp. n′

0(x) ) as distributions of the initial points of the forward

(resp. backward) process denoting

˙

F
¸

n
0

=

Z

dx n
0
(x)

˙

F
¸

x
,

˙

F
¸′

n′

0

=

Z

dx n′
0(x)

˙

F
¸′

x

For ∆ ln n ≡ ln n
0
(x

T
) − ln n

0
(x

0
), define

W = −∆ln n +

T
Z

0

Jt dt

and similarly for W ′ = −W∗ using ∆ ln n′ and the backward process



Immediate Corollaries of Theorem:

• Detailed fluctuation relation:

D

F e−W
E

n
0

=
D

F∗
E

n′

0

• Crooks relation: taking F = δ(W − W ) implies that the

e−W p
T

(W ) = p′
T

(−W )

where p
T

(W ) (resp. p′

T
(W )) is the PDF of W (resp. W ′):

p
T

(W ) ≡
˙

δ(W − W )
¸

n
0

, p
′

T
(W ) ≡

˙

δ(W
′

− W )
¸

′

n′

0

• Jarzynski equality: taking F ≡ 1 implies that
D

e−W
E

n
0

= 1



Entropy balance:

If n
T

is obtained from n
0

by the dynamical evolution then −∆ln n may

be interpreted as the change of instantaneous entropy of the system and

W becomes the total entropy production.

The inequality
˙

W
¸

n
0

≥ 0

that follows from the Jarzynski equality via the Jensen inequality has then

the interpretation of the 2nd Law of Thermodynamics

Remark: Keep in mind that W depends on the choice of the backward

process and of the initial distributions. Different choices lead to

different notions of entropy production



Case of stationary dynamics

For large times T , the PDF p(W ) may take the large deviations form

p
T

(Tw) ≈ e−T ζ(w)

and similarly for p′
T

(Tw). The Crooks relation implies then that

ζ(w) + w = ζ′(w)

If the forward and backward processes have the same distribution

(e.g. with the vector rule for the drift reversal and x∗ ≡ x) then ζ′ = ζ

⇒ the Gallavotti-Cohen symmetry of the rate function ζ.

Remark. If n(x) is the stationary density and ln n(x) is bounded (e.g.

for the process in a bounded domain) then W/T and 1

T

T
R

0

Jt dt,

differing by a boundary term 1

T
∆ ln n, will have the same

large deviations



Relation to the empirical density and empirical current defined by

n
T

(x) =
1

T

T
Z

0

δ(x − xt) dt , j
T

(x) =
1

T

T
Z

0

δ(x − xt) ẋt dt

The large deviations of 1

T

T
R

0

Jt dt may be obtained from those of (n
T

, j
T

) governed

by the rate functional equal to

I[n, j] =
1

4

Z

`

j(x) − jn(x)
´

· d(x)−1
`

j(x) − jn(x)
´

n(x)−1 dx

if ∇ · j ≡ 0 and to +∞ otherwise, where ji
n = (ûi − dij∂j)n is the probability

current associated to the density n. Since

1

T

T

∫
0
Jt dt =

Z

ˆ

u+ · d−1j
T
− (û+ · d−1u−+ ∇· u−)n

T

˜

(x) dx ≡ w[n
T

, j
T

] ,

one has:

ζ(w) = min
(n,j)∈Aw

I(n, j)

where Aw =
˘

(n, j) | ∇ · j ≡ 0 and w = w[n, j]
¯



The stationary fluctuation relation ζ(w) + w = ζ′(−w) follows from the one

for the rate functionals I :

I[n, j] + w[n, j] = I ′[n∗,−j∗]

where n∗(x) = n(x∗)
∂(x∗)
∂(x)

and j∗i(x) = ∂xi

∂x∗k jk(x∗)
∂(x∗)
∂(x)

Remark. Calculation of large deviations rate functions and even their

existence is often not granted, as simple examples show.

Their study for the hydrodynamical limits of stochastic lattice

gases has been a subject of intensive activity (see the courses

of Jona-Lasinio, Derrida, Kurchan, ...)



Multiplicative fluctuation relations

The theory applies to diffusion processes derived from the original one

Example:

ẋi = ui
t(x) + vi

t(x) , Ẋij = (∂kui
t)(x) Xk

j + (∂kvi
t)(x) Xk

j

Matrix X(t) propagates infinitesimal separations δxt between two trajectories

of the process xt :

δxt = X(t) δx0 if X(0) = 1

For the tangent process (xt, Xt), using the pseudo-vector rule to revert the drift

and the involution (x, X)∗ ≡ (x∗, X∗) with (X∗)i
j = ∂x∗i

∂xk Xk
j , one obtains

Jt[xt, Xt] = −(d + 1)
d

dt
ln det(Xt)

and the transient fluctuation relation takes the form

det(X)
D

δ(xt − y) δ(Xt − X)
E

(x,1)
=

D

δ(x∗
t − x) δ(X∗

t
−1 − X)

E′

(y∗,1∗)



Define the stretching rates σ1
t ≥ · · · ≥ σd

t as the eigenvalues of the matrix
1
2t

ln(Xtr
t Xt). If x 7→ x∗ preserves the Euclidean metric then

e
T

P

i

σi
D

δ(xt − y) δ(~σ
T
− ~σ)

E

(x,0)
=

D

δ(x∗
t − x) δ(~σ

T
+ ~σ

E′

(y∗,0)

where ~σ = (σd, . . . , σ1). In the stationary large deviation regime with
D

δ(xt − y) δ(~σ
T
− ~σ)

E

(x,0)
≈ e−TZ(~σ)

this gives the stationary multiplicative fluctuation relation

Z(~σ) −
X

i

σi = Z′(− ~σ)

For Lagrangian tracers in Kraichnan velocities with vanishing mean, Z ′(~σ) = Z(~σ)

For inertial particles,
P

σi = − d
τ

but Z′(~σ) 6= Z(~σ) and the Gallavotti-Cohen

relation is deformed to (Fouxon-Horvai 2007) :

Z(~σ) = Z(− ~σ −
1

τ
~1)



• Z(~σ) takes its (vanishing) minimal value at ~σ = ~λ, where ~λ is the vector

of the Lyapunov exponents, but it contains more information

• Z(~σ) is analytically calculable in the Kraichnan model in some cases via

relations to integrable models (Bernard-Kupiainen-K.G. 1997,

Delannoy-Chetrite-K.G 2006)

• Z(~σ) is important for turbulent transport since it determines:

• rate of decay of moments of transported scalar

• rate of growth of density and magnetic field fluctuations

• multi-fractal dimensions of attractor for tracers in compressible flows
and for inertial particles

• polymer stretching in presence of turbulence



• Z(~σ) becomes accessible numerically in simulations of realistic flows and even

experimentally
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from Boffeta-Davoudi-De Lillo, Europhys. Lett., 74, 62-68 (2006)

(numerical results for two-dimensional surface flows)



Conclusions

• The setup of diffusion processes permits to discuss in a uniform way

fluctuations in models of non-equilibrium statistical mechanics and

of turbulent transport

• Fluctuation relations in such systems compare the statistics of fluctuations

of quantities related to entropy production between forward and backward

processes

• In stationary systems they induce relations between the rate functions

of large deviations governing the long time asymptotics of fluctuations

• Applied to tangent processes, the fluctuation relations induce their

multiplicative extensions

• Further analytic calculations, simulations and experimental measurements

of fluctuation statistics in concrete situations are needed


